Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Sea lice infestations on farmed Atlantic salmon in Scotland and the use of ectoparasitic treatments

Revie, C.W. and Gettinby, G. and Treasurer, J.W. and Grant, A.N. and Reid, S.W.J. (2002) Sea lice infestations on farmed Atlantic salmon in Scotland and the use of ectoparasitic treatments. Veterinary Record, 151 (25). pp. 753-757. ISSN 0042-4900

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A recently compiled national database on sea lice infestations on farmed Atlantic salmon, contains detailed records for the period 1996 to 2000 from over 30 commercial sites on the west coast of Scotland. The data indicate that the two prevalent species of lice, Lepeophtheirus salmonis and Caligus elongatus, have different trends in abundance and distinctive seasonal patterns of infestation on farmed salmon. For the economically important species L salmonis, its abundance on fish varies with the time of the production cycle, the time of year and the particular year. Weekly fluctuations in sea lice counts indicate that treatment can be very effective in controlling infestations but that the counts recover rapidly and regular treatments are necessary to ensure control. A comparison of sites using medium or large numbers of treatments suggests that they do not reduce sea lice infestations to the same levels. There is also evidence that sites using treatments based on different chemical constituents had significantly different levels of infestation.