Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Dependence of aptamer activity on opposed terminal extensions: improvement of light-regulation efficiency

Buff, M.C.R. and Schäfer, F. and Wulffen, Bernhard and Müller, Jens and Pötzsch, Bernd and Heckel, A. and Mayer, G. (2009) Dependence of aptamer activity on opposed terminal extensions: improvement of light-regulation efficiency. Nucleic Acids Research, 38 (6). pp. 2111-2118. ISSN 0305-1048

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Aptamers that can be regulated with light allow precise control of protein activity in space and time and hence of biological function in general. In a previous study, we showed that the activity of the thrombin-binding aptamer HD1 can be turned off by irradiation using a light activatable 'caged' intramolecular antisense-domain. However, the activity of the presented aptamer in its ON state was only mediocre. Here we studied the nature of this loss in activity in detail and found that switching from 5'- to 3'-extensions affords aptamers that are even more potent than the unmodified HD1. In particular we arrived at derivatives that are now more active than the aptamer NU172 that is currently in phase 2 clinical trials as an anticoagulant. As a result, we present light-regulatable aptamers with a superior activity in their ON state and an almost digital ON/OFF behavior upon irradiation.