Two models for absorption by coloured dissolved organic matter (CDOM)
Schwarz, Jill N. and Kowalczuk, Piotr and Kaczmarek, Slawomir and Cota, Glenn F. and Mitchell, B.Greg and Kahru, Mati and Chavez, Francisco P. and Cunningham, Alex and McKee, David J.C. (2002) Two models for absorption by coloured dissolved organic matter (CDOM). Oceanologia, 44 (2). pp. 209-241. ISSN 0078-3234
Full text not available in this repository.Request a copyAbstract
The standard exponential model for CDOM absorption has been applied to data from diverse waters. Absorption at 440 nm (ag440) ranged between close to zero and 10 m-1, and the slope of the semilogarithmic absorption spectrum over a minimum range of 400 to 440 nm (s440) ranged between < 0.01 and 0.04 nm-1. No relationship was found between ag440 or s440 and salinity. Except in the southern Baltic, s440 was found to have a broad distribution (0.0165 ± 0.0035), suggesting that it should be introduced as an additional variable in bio-optical models when ag440 is large. An alternative model for CDOM absorption was applied to available high quality UV-visible absorption spectra from the Wisla river (Poland). This model assumes that the CDOM absorption spectrum comprises distinct Gaussian absorption bands in the UV, similar to those of benzene. Five bands were fit to the data. The mean central energy of all bands was higher in early summer (E~7.2, 6.6, 6.4, 6.2 and 5.5 eV or 172, 188, 194, 200 and 226 nm) than in winter. The higher energy bands were found to decay in both height and width with increasing salinity, while lower energy bands broadened with increasing salinity. s440 was found to be correlated with shape parameters of the bands centred at 6.4 and 5.5 eV. While the exponential model is convenient for optical modelling and remote sensing applications, these results suggest that the Gaussian model offers a deeper understanding of chemical interactions affecting CDOM molecular structure.
ORCID iDs
Schwarz, Jill N., Kowalczuk, Piotr, Kaczmarek, Slawomir, Cota, Glenn F., Mitchell, B.Greg, Kahru, Mati, Chavez, Francisco P., Cunningham, Alex and McKee, David J.C. ORCID: https://orcid.org/0000-0001-8023-5923;-
-
Item type: Article ID code: 23352 Dates: DateEventMay 2002PublishedNotes: Strathprints' policy is to record up to 8 authors per publication, plus any additional authors based at the University of Strathclyde. More authors may be listed on the official publication than appear in the Strathprints' record. Subjects: Science > Physics Department: Faculty of Science > Physics Depositing user: Strathprints Administrator Date deposited: 09 Jul 2010 13:28 Last modified: 11 Nov 2024 09:29 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/23352