Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Implicit solution of hyperbolic equations with space-time adaptivity

Lötstedt, P. and Ramage, A. and Hemmingsson-Frändén, L. and Söderberg, S. (2002) Implicit solution of hyperbolic equations with space-time adaptivity. BIT Numerical Mathematics, 42 (1). pp. 134-158. ISSN 0006-3835

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Adaptivity in space and time is introduced to control the error in the numerical solution of hyperbolic partial differential equations. The equations are discretised by a finite volume method in space and an implicit linear multistep method in time. The computational grid is refined in blocks. At the boundaries of the blocks, there may be jumps in the step size. Special treatment is needed there to ensure second order accuracy and stability. The local truncation error of the discretisation is estimated and is controlled by changing the step size and the time step. The global error is obtained by integration of the error equations. In the implicit scheme, the system of linear equations at each time step is solved iteratively by the GMRES method. Numerical examples executed on a parallel computer illustrate the method.