Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

An analysis of smoothing effects of upwinding strategies for the convection-diffusion equation

Elman, H.C. and Ramage, A. (2002) An analysis of smoothing effects of upwinding strategies for the convection-diffusion equation. SIAM Journal on Numerical Analysis, 40 (1). pp. 254-281. ISSN 0036-1429

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Using a technique for constructing analytic expressions for discrete solutions to the convection-diffusion equation, we examine and characterize the effects of upwinding strategies on solution quality. In particular, for grid-aligned flow and discretization based on bilinear finite elements with streamline upwinding, we show precisely how the amount of upwinding included in the discrete operator affects solution oscillations and accuracy when different types of boundary layers are present. This analysis provides a basis for choosing a streamline upwinding parameter which also gives accurate solutions for problems with non-grid-aligned and variable speed flows. In addition, we show that the same analytic techniques provide insight into other discretizations, such as a finite difference method that incorporates streamline diffusion and the isotropic artificial diffusion method.