Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Differential gravitational coupling between cylindrically-symmetric, concentric test masses and an arbitrary gravitational source: relevance to the STEP experiment

Lockerbie, N.A. and Veryaskin, A.V. and Xu, X. (1993) Differential gravitational coupling between cylindrically-symmetric, concentric test masses and an arbitrary gravitational source: relevance to the STEP experiment. Classical and Quantum Gravity, 10 (11). pp. 2419-2430. ISSN 0264-9381

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The gravitational interaction between a point mass and a finite, hollow, thick-walled cylinder is calculated, the axial force is derived, and the parametric form of the coupling coefficients k2p is presented. This theory is applied to the test-masses for the Satellite Test of the Equivalence Principle (STEP) experiment, and an equation is derived for the differential gravitational coupling to these masses which is more than 105 times faster to compute than a Monte-Carlo integration of similar accuracy.