Optimization of the geometry for dipole-dipole and dipole-monopole experiments, using the gravitational interaction between a point-source and a finite cylinder
Lockerbie, N.A. and Xu, X. and Veryaskin, A.V. (1995) Optimization of the geometry for dipole-dipole and dipole-monopole experiments, using the gravitational interaction between a point-source and a finite cylinder. Nuovo Cimento B, 110 (10). pp. 1183-1195. ISSN 0369-3554 (http://dx.doi.org/10.1007/BF02724609)
Full text not available in this repository.Request a copyAbstract
The torsion balance has been used frequently in the search for weak gravitational-like forces. A major problem in the design of these experiments is the optimization of the geometry of the cylindrical masses that have been used. Starting from the formula for simple Newtonian gravitational interaction, the general formulae for treating both ''dipole-dipole'' and ''dipole-monopole'' interactions for cylindrically shaped bodies are derived. These formulae are used to optimize the shape of both the attracting and balance masses. The interaction forces are derived using only 3D integration-rather than the usual 6D integration carried out over the volumes of both interacting bodies. This has resulted in considerably reduced computational time, and thereby the attainment of high accuracy in the optimization.
ORCID iDs
Lockerbie, N.A. ORCID: https://orcid.org/0000-0002-1678-3260, Xu, X. and Veryaskin, A.V.;-
-
Item type: Article ID code: 17646 Dates: DateEventOctober 1995PublishedSubjects: Science > Physics Department: Faculty of Science > Physics
Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences > Pharmaceutical SciencesDepositing user: Strathprints Administrator Date deposited: 05 May 2010 10:58 Last modified: 04 Jan 2025 01:20 URI: https://strathprints.strath.ac.uk/id/eprint/17646