Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Pharmacological properties of p2x(3)-receptors present in neurones of the rat dorsal root ganglia

Rae, M.G. and Rowan, E.G. and Kennedy, C. (1998) Pharmacological properties of p2x(3)-receptors present in neurones of the rat dorsal root ganglia. Lasers in Medical Science, 124 (1). pp. 176-180. ISSN 0268-8921

Full text not available in this repository. Request a copy from the Strathclyde author


The electrophysiological actions of several agonists which may differentiate between P2X1- and P2X3-receptors were studied under concentration and voltage-clamp conditions in dissociated neurones of 1-4 day old rat dorsal root ganglia. β,γ-Methylene-D-ATP (β,γ-me-D-ATP) (1-300 μM), diadenosine 5',5'''-P1,P5-pentaphosphate (AP5A) (100 nM-300 μM), diadenosine 5',5'''-P1,P4-tetraphosphate (AP4A) (300 nM-300 μM) and uridine 5'-triphosphate (UTP) (1 μM-1 mM) all activated concentration-dependent inward currents with a latency to onset of a few ms. The concentration-response curves for β,γ-me-D-ATP and AP5A and ATP had similar maximum values, while that for AP4A had a lower maximum. The concentration-response curve to UTP was shallow and did not reach a maximum. β,γ-Methylene-L-ATP was virtually inactive. The rank order of agonist potency was ATP>AP5A∼amp;AP4A>β,γ-me-D-ATP>UTP>>β,γ-methylene-L-ATP. The inward currents were inhibited by the P2-receptor antagonists suramin (100 μM) and pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) (10 μM). PPADS also inhibited responses to ATP (800 nM) and α,β-methylene ATP (2 μM) in a concentration-dependent manner. This study shows that β,γ-me-D-ATP, AP5A, AP4A and UTP all act via a suramin- and PPADS-sensitive P2X-receptor to evoke rapid, transient inward currents in dissociated neurones of rat dorsal root ganglia. The very low activity of β,γ-methylene-L-ATP suggests that the agonists were acting at the P2X3-subtype to produce these effects.