Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

A high mass resolution study of the interaction of aromatic and nitro-aromatic molecules with intense laser fields

Tasker, A.D. and Robson, L. and Ledingham, K.W.D. and McCanny, T. and Hankin, S.M. and McKenna, P. and Kosmidis, C. and Jaroszynski, D.A. (2002) A high mass resolution study of the interaction of aromatic and nitro-aromatic molecules with intense laser fields. Journal of Physical Chemistry A, 106 (16). pp. 4005-4013. ISSN 1089-5639

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The technique of femtosecond laser mass spectrometry has been applied to benzene, nitrobenzene, toluene and nitrotoluene using pulses of 80 fs and λ = 800 nm (1014 − 1016 W cm-2). The ultrafast laser pulses used were able to largely defeat the dissociation pathways associated with nanosecond ionization and produce a molecular ion for both the aromatics and the two photounstable nitro-aromatics. The high mass resolution (m/Δm = 800) permitted, for the first time, the observation of various doubly charged species and allowed a study of the effect of the substituent NO2 group on the multiple ionization process. It was found that the femtosecond laser irradiation of benzene and toluene enabled the production of a doubly charged cation envelope in each case along with an additional doubly ionized contribution from certain lower mass fragments. Doubly ionized species were also observed for the nitro-aromatics including, most notably the loss of NO2 doubly charged ion ([M−NO2]2+) although a doubly charged parent was not observed. In addition, an NO2+ ion was detected for both nitro-aromatics which was thought to be evidence of a 'charge-separation' process involving a transient doubly charged molecular ion.