Picture child's feet next to pens, pencils and paper

Open Access research that is helping to improve educational outcomes for children

Strathprints makes available scholarly Open Access content by researchers in the School of Education, including those researching educational and social practices in curricular subjects. Research in this area seeks to understand the complex influences that increase curricula capacity and engagement by studying how curriculum practices relate to cultural, intellectual and social practices in and out of schools and nurseries.

Research at the School of Education also spans a number of other areas, including inclusive pedagogy, philosophy of education, health and wellbeing within health-related aspects of education (e.g. physical education and sport pedagogy, autism and technology, counselling education, and pedagogies for mental and emotional health), languages education, and other areas.

Explore Open Access education research. Or explore all of Strathclyde's Open Access research...

In situ, continuous monitoring of the photoinduced superhydrophilic effect: influence of uv-type and ambient atmospheric and droplet composition

Mills, A. and Crow, M. (2007) In situ, continuous monitoring of the photoinduced superhydrophilic effect: influence of uv-type and ambient atmospheric and droplet composition. Journal of Physical Chemistry C, 111 (16). pp. 6009-6016.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A controlled-atmosphere chamber, combined with a CCTV system, is used to monitor continuously the change in shape of water droplets on the self-cleaning commercial glass, Activ, and a sol−gel TiO2 substrate during their irradiation with either UVA or UVC light. This system allows the photoinduced superhydrophilic effect (PSH) exhibited by these materials to be studied in real time under a variety of different conditions. UVA was less effective than UVC in terms of PSH for both titania-coated glasses, and plain glass was unaffected by either form of UV irradiation and so showed no PSH activity. With UVA, ozone increased significantly the rate of PSH for both substrates, but had no effect on the wettability of plain glass. For both titania substrates and plain glass, no PSH activity was observed under an O2-free atmosphere. A more detailed study of the PSH effect exhibited by Activ revealed that doping the water droplet with either an electron acceptor (Na2S2O8), electron donor (Na2S2O4), or simple electrolyte (KCl) in the absence of oxygen did not promote PSH. However, when Activ was UV irradiated, while immersed in a deoxygenated KCl solution, prior to testing for PSH activity, only a small change in contact angle was observed, whereas under the same conditions, but using a deoxygenated persulfate-containing immersion solution, it was rendered superhydrophilic. The correlation between organic contaminant removal and surface wetting was also investigated by using thick sol−gel films coated with stearic acid; the destruction of SA was monitored by FTIR and sudden wetting of the surface was seen to coincide with the substantial removal of the organic layer. The results of this work are discussed in the context of the current debate on the underlying cause of PSH.