Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

8-hydroxyquinolinyl azo dyes: a class of surface-enhanced resonance raman scattering-based probes for ultrasensitive monitoring of enzymatic activity

Ingram, A.M. and Stokes, Robert J. and Redden, J. and Gibson, K. and Moore, B.D. and Faulds, K. and Graham, D. (2007) 8-hydroxyquinolinyl azo dyes: a class of surface-enhanced resonance raman scattering-based probes for ultrasensitive monitoring of enzymatic activity. Analytical Chemistry, 79 (22). pp. 8578-8583. ISSN 0003-2700

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A series of surface-enhanced resonance Raman scattering (SERRS) based probes for the detection of lipase activity are reported. A number of novel SERRS-active 8-hydroxylquinolinyl azo dyes have been prepared and via synthetic esterification or subsequent enzymatic hydrolysis at the 8-hydroxyl position the SERRS signal can be 'switched' on or off. In the first instance, the technique has been demonstrated for the successful detection of lipase from Pseudomonas cepacia, and these new compounds offer a limit of detection of 0.2 ng mL-1 enzyme, up to a 100-fold lower limit than observed for benzotriazolyl dyes used in previous studies. The chemical synthesis is straightforward and allows for facile introduction of a wide range of different masking groups, using commonly known synthetic methodologies. The potential for multiplexing analysis of enzyme activity using this technology is presented within.