DNA sequence detection using surface-enhanced resonance raman spectroscopy in a homogeneous multiplexed assay
Macaskill, A. and Crawford, D. and Graham, D. and Faulds, K. (2009) DNA sequence detection using surface-enhanced resonance raman spectroscopy in a homogeneous multiplexed assay. Analytical Chemistry, 81 (19). pp. 8134-8140. ISSN 0003-2700 (https://doi.org/10.1021/ac901361b)
Full text not available in this repository.Request a copyAbstract
Detection of specific DNA sequences is central to modern molecular biology and also to molecular diagnostics where identification of a particular disease is based on nucleic acid identification. Many methods exist, and fluorescence spectroscopy dominates the detection technologies employed with different assay formats. This study demonstrates the use of surface-enhanced resonance Raman scattering (SERRS) to detect specific DNA sequences when coupled with modified SERRS-active probes that have been designed to modify the affinity of double- and single-stranded DNA for the surface of silver nanoparticles resulting in discernible differences in the SERRS which can be correlated to the specific DNA hybridization event. The principle of the assay lies on the lack of affinity of double-stranded DNA for silver nanoparticle surfaces; therefore, hybridization of the probe to the target results in a reduction in the SERRS signal. Use of locked nucleic acid (LNA) residues in the DNA probes resulted in greater discrimination between exact match and mismatches when used in comparison to unmodified labeled DNA probes. Polymerase chain reaction (PCR) products were detected using this methodology, and ultimately a multiplex detection of sequences relating to a hospital-acquired infection, namely, methicillin-resistant Staphylococcus aureus (MRSA), demonstrated the versatility and applicability of this approach to real-life situations.
ORCID iDs
Macaskill, A., Crawford, D., Graham, D. ORCID: https://orcid.org/0000-0002-6079-2105 and Faulds, K. ORCID: https://orcid.org/0000-0002-5567-7399;-
-
Item type: Article ID code: 16908 Dates: DateEvent10 September 2009PublishedSubjects: Science > Chemistry Department: Faculty of Science > Pure and Applied Chemistry Depositing user: Strathprints Administrator Date deposited: 25 Mar 2010 16:42 Last modified: 16 Nov 2024 02:17 URI: https://strathprints.strath.ac.uk/id/eprint/16908