Entanglement and local information access for graph states
Virmani, Shashank (2007) Entanglement and local information access for graph states. New Journal of Physics, 9 (194). ISSN 1367-2630 (http://dx.doi.org/10.1088/1367-2630/9/6/194)
Full text not available in this repository.Request a copyAbstract
We exactly evaluate a number of multipartite entanglement measures for a class of graph states, including d-dimensional cluster states (d = 1,2,3), the Greenberger-Horne-Zeilinger states, and some related mixed states. The entanglement measures that we consider are continuous, 'distance from separable states' measures, including the relative entropy, the so-called geometric measure, and robustness of entanglement. We also show that for our class of graph states these entanglement values give an operational interpretation as the maximal number of graph states distinguishable by local operations and classical communication (LOCC), as well as supplying a tight bound on the fixed letter classical capacity under LOCC decoding.
-
-
Item type: Article ID code: 16860 Dates: DateEventJune 2007PublishedSubjects: Science > Physics Department: Faculty of Science > Physics Depositing user: Users 784 not found. Date deposited: 19 Mar 2010 18:28 Last modified: 04 Jan 2025 03:02 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/16860