Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Nature of the improved raman-scattering from alpha-copper phthalocyanine particles on a compacted electrode

Bovill, A.J. and McConnell, A.A. and Smith, W.E. (1990) Nature of the improved raman-scattering from alpha-copper phthalocyanine particles on a compacted electrode. Journal of the Chemical Society, Faraday Transactions, 86 (24). pp. 4065-4069. ISSN 0956-5000

Full text not available in this repository. Request a copy from the Strathclyde author


Electrodes consisting of a compacted mixture of powders of silver metal and alpha-copper phthalocyanine (CuPc) have been used to study small pigment particles bonded to the metal surface using resonance Raman spectroscopy as a probe of in situ changes. This system provides a different starting point for the study of the nature of the terms which give rise to improved Raman scattering at metal surfaces. An understanding of these processes is vital if Raman spectroscopy is to achieve its potential as an in situ method for the detection of reactions at metal/organic interfaces in aqueous solution. Resonance excitation profiles (REPs) indicate that the improved scattering is in the region of the phthalocyanine absorption (Q band) and resembles a CuPc multilayer. There is a significant electronic interaction between the particles and the metal surface with a downward shift in the O-O transition energy of the Q band of ca. 30 nm. The REPs from the electrode surface are more clearly resolved than for CuPc itself. There are fewer effective vibronic contributions especially at negative potentials and scattering is greater from higher vibronic levels. New bands not present in the spectrum of CuPc appear at negative potentials and the appearance coincides with changes in intensity of bands observed at all potentials. Two different mechanisms of enhancement are indicated: a resonance mechanism where increased scattering efficiency is achieved both by good sample presentation and by an electronic interaction between the particles and the metal, and a surface-enhanced resonance effect which competes with the resonance mechanism at negative potentials. Both the resonance effect and the surface-enhanced effect give rise to REPs attributable to phthalocyanine Q-band interactions. Both processes arise from a long-range 'charge-transfer' mechanisms between the CuPc particles and the metal rather than from short-range metal-monolayer interactions.