Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

The thermo-mechanical performance of glass-fibre reinforced Polyamide 66 during glycol-water hydrolysis conditioning

Thomason, J.L. and Ali, J.Z. and Anderson, J. (2010) The thermo-mechanical performance of glass-fibre reinforced Polyamide 66 during glycol-water hydrolysis conditioning. Composites Part A: Applied Science and Manufacturing, 41 (7). pp. 820-826. ISSN 1359-835X

Text (strathprints016526)
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (453kB)| Preview


    Injection moulded glass-fibre reinforced polyamide 66 composites based on two glass fibre products with different sizing formulations and unreinforced polymer samples have been characterised by dynamic mechanical analysis and unnotched Charpy impact testing both dry as moulded and during conditioning in a glycol-water mixture at 70°C for a range of times up to 400 hours. Simultaneously weight and dimension changes of these materials have been recorded. The results reveal that hydrothermal ageing in glycol-water mixtures causes significant changes in the thermo-mechanical performance of these materials. It is shown that mechanical performance obtained after conditioning at different temperatures can be superimposed when considered as a function of the level of fluid absorbed by the composite polymer matrix.