Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Bayes geometric scaling model for common cause failure rates

Zitrou, Athena and Bedford, Tim and Walls, Lesley (2010) Bayes geometric scaling model for common cause failure rates. Reliability Engineering and System Safety, 95 (2). pp. 70-76. ISSN 0951-8320

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper proposes a mathematical model to associate key operational, managerial and design characteristics of a system with the system's susceptibility towards common cause failure (CCF) events. The model, referred to as the geometric scaling (GS) model, is a mathematical form that allows us to investigate the effect of possible system modifications on risk. As such, the presented methodology results in a CCF model with a strong decision-making character. Based on a Bayesian framework, the GS model allows for the representation of epistemic uncertainty, the update of prior uncertainty in the light of operational data and the coherent use of observations coming from different systems. From a CCF perspective these are particularly useful model features, because CCF events are rare; hence, the operational data available is sparse and is characterised by considerable uncertainty, with databases typically containing events from nominally identical systems from different plants. The GS model also possesses an attractive modelling feature because it significantly decreases the amount of information elicited from experts required for quantification.