Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

The efficacy of emamectin benzoate against infestations of Lepeophtheirus salmonis on farmed Atlantic salmon (Salmo salar L) in Scotland, 2002-2006

Lees, Fiona and Baillie, Mark and Gettinby, George and Revie, Crawford W., Marine Harvest (Scotland) (Funder) (2008) The efficacy of emamectin benzoate against infestations of Lepeophtheirus salmonis on farmed Atlantic salmon (Salmo salar L) in Scotland, 2002-2006. PLoS One, 3 (2). pp. 1-11. ISSN 1932-6203

[img]
Preview
PDF (9._LeesEtAl_PLosOne_2008(a).pdf)
9._LeesEtAl_PLosOne_2008(a).pdf
Accepted Author Manuscript

Download (344kB) | Preview

Abstract

Infestations of the parasitic copepod Lepeophtheirus salmonis, commonly referred to as sea lice, represent a major challenge to commercial salmon aquaculture. Dependence on a limited number of theraputants to control such infestations has led to concerns of reduced sensitivity in some sea lice populations. This study investigates trends in the efficacy of the in-feed treatment emamectin benzoate in Scotland, the active ingredient most widely used across all salmon producing regions. Study data were drawn from over 50 commercial Atlantic salmon farms on the west coast of Scotland between 2002 and 2006. An epi-informatics approach was adopted whereby available farm records, descriptive epidemiological summaries and statistical linear modelling methods were used to identify factors that significantly affect sea lice abundance following treatment with emamectin benzoate (SLICEH, Schering Plough Animal Health). The results show that although sea lice infestations are reduced following the application of emamectin benzoate, not all treatments are effective. Specifically there is evidence of variation across geographical regions and a reduction in efficacy over time. Reduced sensitivity and potential resistance to currently available medicines are constant threats to maintaining control of sea lice populations on Atlantic salmon farms. There is a need for on-going monitoring of emamectin benzoate treatment efficacy together with reasons for any apparent reduction in performance. In addition, strategic rotation of medicines should be encouraged and empirical evidence for the benefit of such strategies more fully evaluated.