Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Interpolation and scattered data fitting on manifolds using projected Powell–Sabin splines

Davydov, O. and Schumaker, L.L. (2008) Interpolation and scattered data fitting on manifolds using projected Powell–Sabin splines. IMA Journal of Numerical Analysis, 28 (4). pp. 785-805. ISSN 0272-4979

[img]
Preview
PDF (man_theory.pdf)
man_theory.pdf
Accepted Author Manuscript

Download (251kB) | Preview

Abstract

We present methods for either interpolating data or for fitting scattered data on a two-dimensional smooth manifold. The methods are based on a local bivariate Powell-Sabin interpolation scheme, and make use of a family of charts {(Uξ , ξ)}ξ∈ satisfying certain conditions of smooth dependence on ξ. If is a C2-manifold embedded into R3, then projections into tangent planes can be employed. The data fitting method is a two-stage method. We prove that the resulting function on the manifold is continuously differentiable, and establish error bounds for both methods for the case when the data are generated by a smooth function.