Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Laser ultrasound for the non contact characterisation of the mechanical properties of materials

Culshaw, B. and Sorazu, B.L. and Pierce, S.G. and McKee, Campbell S.R. and Thursby, G.J. (2008) Laser ultrasound for the non contact characterisation of the mechanical properties of materials. In: 1st international conference on laser ultrasonics science, technology and applications, 2008-07-16 - 2008-07-18. (Unpublished)

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We present our perspectives on using laser ultrasound, coupled with optical detection, to characterise the properties of plate like structures. The laser source launches a wideband signal in spatial and temporal domains exciting a Lamb wave spectrum over several octaves. Optical detection picks out the modal dispersion curves and inverting these mathematically presents values for thickness, density, modulus and Poisson ratio with confidence levels of a few per cent. Our investigations have compared approaches to dispersion curve measurement involving both 2-D and short time FFT to examine different areas of the specimen. We have compared high peak power impulse excitation with synthetic pulse generation using frequency scanned (or Pseudo Random Binary Sequence pulsed) low power sources based on semiconductor lasers or fibre amplifier based systems. A thorough analysis of the numerical inversion process has demonstrated that, with careful optimisation, the data obtained from the sample may be confidently inverted. Our demonstrations to date have been on large scale (mm thick by cm longitudinal dimensions) samples and studies of the application of the concepts to micro-systems are currently under way.