Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Communicability graph and community structures in complex networks

Estrada, Ernesto and Hatano, Naomichi, Institute of Industrial Science, University of Tokyo (Funder), New Professors Fund University of Strathclyde (Funder) (2009) Communicability graph and community structures in complex networks. Applied Mathematics and Computation, 214 (2). pp. 500-511. ISSN 0096-3003

[img]
Preview
Text (strathprints014296)
strathprints014296.pdf
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (402kB) | Preview

Abstract

We use the concept of the network communicability (Phys. Rev. E 77 (2008) 036111) to define communities in a complex network. The communities are defined as the cliques of a 'communicability graph', which has the same set of nodes as the complex network and links determined by the communicability function. Then, the problem of finding the network communities is transformed to an all-clique problem of the communicability graph. We discuss the efficiency of this algorithm of community detection. In addition, we extend here the concept of the communicability to account for the strength of the interactions between the nodes by using the concept of inverse temperature of the network. Finally, we develop an algorithm to manage the different degrees of overlapping between the communities in a complex network. We then analyze the USA airport network, for which we successfully detect two big communities of the eastern airports and of the western/central airports as well as two bridging central communities. In striking contrast, a well-known algorithm groups all but two of the continental airports into one community.