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Abstract 

We use the concept of the network communicability (Phys. Rev. E 77 (2008) 036111) to 

define communities in a complex network. The communities are defined as the cliques of a 

�communicability graph�, which has the same set of nodes as the complex network and 

links determined by the communicability function. Then, the problem of finding the 

network communities is transformed to an all-clique problem of the communicability 

graph. We discuss the efficiency of this algorithm of community detection. In addition, we 

extend here the concept of the communicability to account for the strength of the 

interactions between the nodes by using the concept of inverse temperature of the network. 

Finally, we develop an algorithm to manage the different degrees of overlapping between 

the communities in a complex network. We then analyze the USA airport network, for 

which we successfully detect two big communities of the eastern airports and of the 

western/central airports as well as two bridging central communities. In striking contrast, a 

well-known algorithm groups all but two of the continental airports into one community. 

 

 

Keywords: Graph spectrum, Complex networks, Communicability, Network communities, 

Bron-Kerbosch algorithm, All-cliques problem 
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1 Introduction 

One of the most active fields of research in the study of complex networks is the detection 

and analysis of network communities [6, 17]. Since the seminal paper of Girvan and 

Newman [11], there have been many different approaches reported in the mathematical, 

computer sciences and physics literature dedicated to this problem [4, 12, 7, 19, 20, 25]. 

Communities are structural subunits in networks which are a signature of the hierarchical 

nature of complex systems [20]. They appear in a wide variety of systems ranging from 

functionally related proteins to social groups. The unambiguous identification of this a priori 

unknown structural groups in networks depends very much on how a community is defined. 

Intuitively, a community is a group of nodes in the network which is �more densely� 

connected among them than with the rest of the nodes. Then, the various methods available 

in the literature differ mainly in the way in which they define what �more densely� connected 

means as well as in the algorithm that is used to find such groups of nodes. In particular, there 

has been a long tradition in statistical and data mining sciences in finding clusters in data, 

which has given rise to several clustering methods [10]. The Kernigham-Lin algorithm [14] 

used in computer science maximize a quality function that relates the number of edges inside 

each group to the number between groups. This method has inspired many other methods 

currently available for community detection in complex networks, which are based on 

optimization of certain parameters related to a group of nodes. The most popular of such 

methods are the ones based on modularity optimization [18]. On the other hand, the method 

proposed by Girvan and Newman [11] finds communities on the based on the concept of the 

betweenness centrality, which is one of the many centrality measures used to characterize the 

relevance of nodes in a complex network [26]. Another approach, which differs significantly 
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from the previous ones, was introduced by Palla et al. in 2005 [20]. They use the k-clique 

percolation method to find overlapped communities in a complex network. Finally, it is 

necessary to mention a series of methods based on spectral techniques, which are known as 

spectral partitioning methods [9]. These approaches use information related to the 

eigenvalues and eigenvectors of matrices representing the network in order to divide it into 

different clusters. Other methods were reviewed in a recent literature; the reader is referred to 

these works and the references cited therein ref. [22].  

 In our recent work [8], we sketched a method of community detection in a complex 

network. This approach is based on the concept of the communicability between nodes in a 

complex network. We then defined a community as a group of nodes having larger internal 

communicability than the external one. The communicability is a measure of how two nodes 

in a network are tied to each other. It is a broad generalization of the concept of the shortest 

path between two nodes. When applied to the detection of communities, the 

communicability permits to overcome some difficulties found by the use of previously 

proposed methods. One of the difficulties is the use of some empirical parameters in the 

definition of communities. On the basis of the communicability, in contrast, the communities 

in a complex network can be unambiguously defined. This avoids the situation arising in 

many cases where the number of communities detected in a complex network depends on 

empirical parameters, which can yield arbitrary results. Another desirable property of 

algorithms of detecting communities is their ability to identify overlap between 

communities. As remarked by Palla et al. [20], we are at the same time member of several 

communities that overlap with each other forming a sort of supercommunities.  

Here we introduce a new concept, the communicability graph. Communities of a graph 
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are then re-defined as cliques of the communicability graph associated to the graph in 

question. In contrast to Palla et al.�s method [20], our method finds the cliques in this 

communicability graph, not the cliques existing in the original network. This method is a 

variation of the complete linkage method, which according to Newman [17] has perhaps 

more desirable properties, but it is rarely used, due to the fact that �finding cliques in a graph 

is a hard problem�. The other difficulty stated by Newman [17] is that �the cliques are, in 

general, not unique�. That is, a vertex can belong to two or more different cliques at the same 

time.   

We show here that some variations of the classical algorithms of finding cliques are 

very efficient in very large graphs, which practically solves the first difficulty mentioned 

above. Then, we take advantage of the second difficulty in order to detect the overlaps 

among communities, which are determined as the subsets of nodes that are in more than one 

clique at the same time. Consequently, we find here a straightforward and unambiguous 

identification of the communities in a complex network. We can then easily identify all the 

communities in a network as well as their overlaps without any fitting or empirical 

parameters. 

The present paper is organized as follows. In section 2, we give a short review of the 

concept of the communicability of a complex network. We then go to an efficient algorithm 

of community detection in section 3. Section 4 introduces the generalized communicability 

with a variable parameter, which we refer to as the inverse temperature, and thereby 

discusses the generalization of our algorithm of community detection using the generalized 

communicability. Then, we propose in Section 5 a method of analyzing communities at 

different degrees of overlapping. All these concepts are tested in one simple real-world 
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network in Section 6 and finally in Section 7 we show numerical examples for the real-world 

complex transportation network of airports in USA. 

 

2 Communicability: a short review 

In order to introduce the concept of the communicability graph, we should first 

review the concept of the communicability itself, which we introduced in a recent work [8]. 

In the following, we consider simple graphs G = V ,E( ), that is, graphs having nV =  nodes 

and mE =  links, without self-loops or multiple links between nodes [13]. The 

communicability between a pair of nodes is defined as a weighted sum of the number of all 

walks connecting the pair of nodes, where a walk of length k is a sequence of (not necessarily 

different) vertices  such that for each kk vvvv ,,,, 110 −L k,2,1 Li =  there is a link from  to 

. These walks communicating two nodes in the network can revisit nodes and links several 

times along the way. Let 

1−iv

vi

A G( )= A  be the adjacency matrix of the graph whose elements 

 are ones or zeroes if the corresponding nodes i  and Aij j  are adjacent or not, respectively. 

Then, the moment  gives the number of walks of length  starting at the 

node 

μk p,q( )= A
k( )

pq
k

p  and ending at the node  [5]. q

As mentioned above, we define the communicability between a pair of nodes p  and 

 as a weighted sum of the moments q μk p,q( ). The weight is given in a way that shorter 

walks receive more weights than longer ones. Specifically, we used the weight 1 k!  for the 

k th moment and arrived at a formula expressing the communicability    between nodes  qpG ,

p   and    in terms of graph spectral parameters [8],  q
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Gp, q =
μk p,q( )

k!k=0

∞

∑ =
A

k( )
pq

k!k=0

∞

∑ =
j=1

n

∑φ j (p)φ j (q)e
λ j ,      (1) 

where  )( pjφ   is the p th component of the j th eigenvector of the adjacency matrix A , 

which is associated with the eigenvalue jλ . (We will generalize the weight factor k!  in 

Section 4.) We call the eigenvalues of the adjacency matrix in the non-increasing order 

nλλλ ≥≥L2≥1 , the spectrum of the graph [5].  

The communicability can be decomposed into several terms as  

Gp, q = φ1(p)φ1(q)eλ1⎡⎣ ⎤⎦

+
2≤ j≤n

∑ ++
φ j (p)φ j (q)e

λ j +
2≤ j≤n

∑ −−
φ j (p)φ j (q)e

λ j
⎡

⎣
⎢

⎤

⎦
⎥

+
2≤ j≤n

∑ +−
φ j (p)φ j (q)e

λ j +
2≤ j≤n

∑ −+
φ j (p)φ j (q)e

λ j
⎡

⎣
⎢

⎤

⎦
⎥,

    (2) 

where the    signs in the sums indicate that the summation is carried out for the 

positive/negative components of the corresponding eigenvector, respectively. To be more 

precise, the summation  is taken over terms in which 

−+ /

Σ++ φ j (p) > 0  and φ j (q) > 0 , whereas 

the summation  is taken over terms in which Σ+− φ j (p) > 0  and φ j (q) < 0 , and so forth. 

Note that we separated the contribution of the principal eigenvector φ1 ; according to the 

Perron-Frobenius theorem, all components of the principal eigenvector are positive. 

It may be easier to understand the communicability (2) in terms of the Green�s 

function of a spring network. Suppose that the nodes of the network in question are balls and 

the links are springs. We argued [8] that the adjacency matrix A  is equivalent to the 

Hamiltonian of the spring network and the communicability (2) is equivalent to the Green�s 

function of the spring network. The eigenvectors of the adjacency matrix represent 
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vibrational modes of the network, and the principal eigenvector φ1 , in particular, represents 

the translational movement of the whole network. Hence the first bracketed term on the 

right-hand side of the Green�s function (2) represents the movement of all the nodes (the 

balls) in one direction after an impact on one node, as if they were part of a giant cluster 

formed by the whole. We are not interested in this contribution because we want to analyze 

the inner structure of the network. We will therefore subtract this term in the following. 

In the second bracketed term on the right-hand side of Eq. (2), the nodes p  and q  

have the same sign of the corresponding eigenvector (positive or negative); if we put an 

impact on the ball p , the ball  oscillates in the same direction as the ball q p . We thus 

regard that p  and  are in the same cluster if there are more than one cluster in the network. 

Consequently, we call this second term of Eq. (2) the intracluster communicability. The last 

bracketed term of Eq. (2), on the other hand, represents an uncoordinated movement of the 

nodes 

q

p  and , i.e., they have different signs of the eigenvector component; if we put an 

impact on the ball 

q

p , the ball  oscillates in the opposite direction. We regard that they are 

in different clusters of the network. Then, we call this third term of Eq. (2) the intercluster 

communicability between a pair of nodes.  

q

As mentioned above, we leave out the first term from Eq. (2) because we are not 

interested in the translational movement of the whole network and thereby consider the 

quantity 
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ΔGp, q =
2≤ j≤n

∑ ++
φ j (p)φ j (q)e

λ j +
2≤ j≤n

∑ −−
φ j (p)φ j (q)e

λ j
⎡

⎣
⎢

⎤

⎦
⎥

+
2≤ j≤n

∑ +−
φ j (p)φ j (q)e

λ j +
2≤ j≤n

∑ −+
φ j (p)φ j (q)e

λ j
⎡

⎣
⎢

⎤

⎦
⎥

=
j=2

intracluster

∑ φ j (p)φ j (q)e
λ j −

j=2

intercluster

∑ φ j (p)φ j (q)e
λ j ,

              (3) 

where in the last line we used the fact that the intracluster communicability is a positive term 

and the intercluster communicability is a negative one [8]. We thereby defined [8] that the 

nodes p  and  belong to the same cluster if the quantity q qpG ,Δ   is positive, and they do not 

if it is. In other words, we defined unambiguously a community  of a network   

as follows: 

C ),( EVG =

Definition 1:   is a community of G  if, and only if, VC ⊆ CqpG qp ∈∀>Δ ),(   0)(, β . 

 This definition contains the seed of an algorithm of detecting the communities in a 

complex network. The objective of this algorithm is to identify all pairs of nodes having 

 0)(, >Δ βqpG  in the graph. For the purpose, we will introduce in the next section a new 

concept that permits the identification of network communities in an efficient way. 

 

3 Communicability graphs 

 In the present section, we define the communicability graph for a complex network 

on the basis of Eq. (3). Before introducing the definition, let us explain the motivation. The 

introduction of the concept of communicability leads invariably to an unambiguous 

definition of communities in a complex network. However, this does not mean that we have 

an elaborate algorithm of detecting such communities in the network. The problem consists 

of identifying all pairs of nodes having  0)(, >Δ βqpG  in the graph. This can be done, in 
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principle, by carrying out certain arrangements of the matrix representing the values of 

)(, βqpGΔ

(,

for all pairs of nodes in the graph. By this way the communities can be identified 

as the positive submatrices in such a matrix. However, this method faces the problem of 

identifying nodes which are in more than one community at the same time due to the 

community overlapping. A better solution to this problem consists of representing the values 

of )βqpGΔ

Θ(x) =
⎧
⎨
⎪

⎩⎪

)(G

 between every pair of nodes as a new graph. Then, we can find communities as 

cliques in this graph associated to the network in question. We call this graph, for obvious 

reasons, the communicability graph of the complex network. 

Let us define the communicability graph for a complex network. First, we introduce 

the following function, 

1 if x ≥ 0,

0 if x < 0.
                  (4) 

 be a matrix whose entries are given by ),( qp )(, βqpGΔ . Δ Let 

Definition 2: The communicability graph )(GΘ  of the graph G  is the graph whose 

adjacency matrix is given by ))(( GΔΘ , where ))(( GΔΘ  results from the elementwise 

application of the function  to the matrix )(xΘ )(GΔ . The nodes of )(GΘ  are the same as 

the nodes of G , and two nodes  p  and  in q )(GΘ  are connected if, and only if, 

0>)(,Δ βqpG  in G . 

Now, let us recall the following concepts from graph theory [13]. A complete 

subgraph is a part of a graph in which all nodes are connected to each other. A clique is a 

locally maximal complete subgraph. Then, using the definitions 1 and 2, it is straightforward 

to realize that every community in the graph G  is represented by a clique of the 
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accompanying communicability graph )(GΘ . Thence the problem of finding the 

communities of a graph  is reduced to the problem of finding the cliques of . G )(GΘ

The enumeration of all cliques in a graph is known as the all-clique problem [2, 21]. 

That is, given a graph we need to determine all maximal complete subgraphs. This problem 

is a very well-known NP-hard problem. A classic branch-and-bound approach for solving 

this problem is the Bron-Kerbosch algorithm (BK-algorithm) [3]. The BK-algorithm works 

recursively and is reported as the fastest enumeration algorithm. It is also robust and easily 

modifiable [15], which makes it a good candidate to be applied for large complex networks. 

The algorithm finds all cliques in a graph exactly once, using three sets P , , and Q R . In 

Table 1, we give a general algorithm for identifying the communities in a complex network 

based on the cliques of the communicability graph.  

Table 1. Algorithm for identifying communities in a network.  

 

GENERATE COMMUNICABILITY GRAPH, ( )GΘ  

ENUMERATE CLIQUES  ( )RQP ,,

>  enumerates all cliques in the communicability graph ( )GΘ  

:P  set of nodes belonging to the current clique 

:Q  set of nodes which can be added to  P

:R  set of nodes which are not allowed to be added to  P

[ ]:pN  set of neighbors of node p  in  G

 

01.   Let Q  be the set ; { }kpp ,,1 L

02.   if 0=Q  and 0=R  

03.      th e n  REPORT-CLIQUE; 

04.      e ls e  fo r  1←i  to k  

05.         do  { }1\ pQ ; Q ←
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06.              QQ ←′ ; 

07.              RR ←′ ; 

08.               { }{ }EqpVvN i ∈∈← , ; 

09.                ENUMERATE-CLIQUES { }( )NRNPpC i ∩′∩′∪ ,, ; 

10 .               { }ipR ; R ∪←′

11.          o d ; 

12.   fi; 

 

In a recent analysis of the complexity for generating all maximal cliques in a graph 

using pruning methods as in the BK-algorithm, Tomita et al. [24] have found that the 

worst-case time is ( )3/3n
O  for an -node graph. However, in the same study these authors 

carried out a computational analysis which is of greater importance for our current purposes. 

They showed that the algorithm runs very fast in practice. For instance, for a random graph 

having  nodes and average degree 

n

000,10=n 10=k , the algorithm consumes 10.86 

seconds in Pentium4 2.20 GHz CPU with 2GB main memory and a Linux operating system. 

In fact, the graph contains 49,738 maximal cliques. Even for a random graph having 

 nodes and a very large average degree 000,10=n 1000=k , the algorithm consumes 

1,825.45 seconds in identifying 229,786,397 cliques. It is useful to know that most of the 

real-world networks which have been already analyzed in the literature are sparse and have 

average degree 500<k  (see for instance ref. [16]). In Fig. 1 we plot some of the results 

obtained by Tomita et al. [24], where the CPU time obtained with the KB algorithm is 

plotted versus the size of sparse random graphs having from 1,000 to 10,000 nodes as well as 

for random graphs having 10,000 nodes and the average degree changing from 10 to almost 

500. 
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Insert Fig. 1 about here. 

 

4 Generalized communicability and its application to community detection 

In the precedent sections we considered that the communicability in the form (1), 

where the weight of the summation was 1 k!  for the moment μk . Here we generalize the 

weight in order to allow a variable parameter and seek possibilities of generalized definition 

of the communicability. 

Specifically, we use the weight β k
k! as 

Gp,q (β) =
β k

k!k=0

∞

∑ μk p,q( )=
β k

A
k( )

pq

k!k=0

∞

∑ = e
βA( )

pq
.               (5) 

This is reduced to the original definition at β = 1 . The best way of thinking about this 

parameter may be to suppose that we submerge the network into a thermal bath at the 

temperature T , where  with  a constant. The thermal bath represents an 

external situation which affects all the links in the network at the same time. For instance, if 

we think about a protein-protein interaction network the thermal bath can represent a level of 

stress that the cell suffers due to external conditions. Then, these external factors affect all 

protein-protein interactions at the same time. We thereby call the parameter 

β = kBT( )−1
kB

β  the inverse 

temperature hereafter.  

For 1<<β , the longer walks between the two nodes are more severely penalized than 

in the definition (1); only very short walks are accounted as the generalized communicability 

between the nodes. As 0→β , the generalized communicability is approximately 

proportional to the number of the shortest paths, a measure used in some works [11] to find 
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communities in a complex network. When 1>>β , the long walks receive more weights, 

indicating that we take more account of long walks in considering communities. 

The inverse temperature β  can have different meanings in different contexts. It can 

represent different levels of stress of a cell or social agitation in a social network. Another 

way of seeing the generalized communicability (5) is to regard β  as the strength of each 

link. Consider a generalized adjacency matrix A(β) , whose element A(β)( )
ij

 is β  instead 

of unity if the nodes  and i j  are adjacent to each other. Then the generalized 

communicability (5) is simply given by 

Gp,q (β) =
A(β)k( )

pq

k!k=0

∞

∑ ,                  (6) 

which goes back to the definition (1). In this context, by changing the inverse temperature β , 

we change the communication strength of the links, e.g., the spring constant of a spring 

network, the conductivity of a resister network, the bandwidth of a telephone network and so 

on. In the extreme case 0=β , the network behaves as an empty graph, i.e., a graph without 

links. For large β , on the other hand, communication between nodes takes place by using 

long-range routes. 

Let us discuss Eq. (5) further from a point of view of the network spectrum. For simple 

graphs the communicability between a pair of nodes in a network at inverse temperature β  

is given by, 

( ) jeqpG jj

n

j

qp

βλφφβ )()(
1

, ∑
=

= .                  (7) 

Proposition 1: As 0→β  ( ∞→T ), the communicability between any pair of nodes in the 

graph vanishes as 
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( ) ( ) ( ) 00
1

==→ ∑
=

qpG j

n

j

jpq φφβ .                 (8)   

Proposition 2: As ∞→β  ( ), the communicability between any pair of nodes in the 

graph is determined by the Perron-Frobenius eigenvalue/eigenvector of the adjacency 

matrix, 

0→T

( ) ( ) ( ) 1

11

λφφβ eqpGpq =∞→  

Proof: Let ( qpr , )μ  be the number of walks of length r  between nodes p and . It is 

known that for very large 

q

r , the number of such walks is dominated by the principal 

eigenvalue of the adjacency matrix of the graph, 

( ) ( ) ( ) r

r qpqp 111, λφφμ ≈   as ∞→r .                 (9) 

Then in the limit ∞→β , we can see that the communicability between the nodes p and q  

is mainly determined by the Perron-Frobenius eigenvalue and eigenvector of the graph, 

which proves the result, 

( ) ( ) ( ) ( ) ( ) ( ) 1

11

0

1
11

0 !!

, λφφ
λ

φφ
μ

β eqp
r

qp
k

qp
G

r

r

k

k

pq =≈=∞→ ∑∑
∞

=

∞

=

.           (10) 

These two analytical results have important consequences for the detection of 

communities at different inverse temperatures. When 0→β , we have Eq. (8) and hence 

( ) 0)()(0 11, <−=→Δ qpG qp φφβ ,               (11) 

which implies that the modulus of the intercluster communicability is larger than the 

intracluster one for every pair of nodes, 

)()()()(
erinterclust

2

erintraclust

2

qpqp jj

j

jj

j

φφφφ ∑∑
≥≥

<   VqVp ∈∈∀ , .            (12) 

The communicability graph )(GΔ  is an empty graph and hence there is no communities in 
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the graph when 0→β . 

The situation for the very large inverse temperatures is quite straightforward. 

Because G , we have pq β φ1 p( )φ1 q( )eβλ1→∞( )=

0=( )∞→Δ βpqG   ,               (13) VqV ∈∈ ,p∀

which means that every pair of nodes in the communicability graph are connected to each 

other, i.e., the communicability graph is a complete graph. In other words, there is one 

community formed by all the nodes of the graph. The study of the values ∞<≤ β0  is 

carried out in a computational way in the following section. There are several other 

mathematical and computational aspects of this problem which, for the sake of brevity, will 

be not considered here but elsewhere. 

 

5 Mergence of overlapping communities 

One of the characteristics of the current approach is its ability to identify the overlaps 

among the communities in a complex network. In the present section, we discuss how to 

analyze the communities once we detect them by the method proposed above. 

Two communities are overlapped if they share at least one common node. We can use 

this information in order to analyze the degree of overlapping between two communities, 

which can be related to the similarity between the communities in question. Then, we 

propose the following index as the overlap between the communities A and B in a network: 

BA

BA
S AB +

∩
=

2
, 

where the numerator is the number of nodes in common in the two communities and the 

denominator gives the sum of the number of nodes in both communities. This index is known 
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in the statistical literature as the Sørensen similarity index [23] and is used to compare the 

similarity between two samples in ecological systems in particular. The index is bounded as 

, where the lower bound is obtained when no overlap exists between the two 

communities and the maximum is reached when the two communities are identical. 

10 ≤≤ ABS

We can calculate the similarity index  for each pair of communities found in the 

network and then represent all results as a matrix S . Now, let us suppose that we are 

interested in identifying only those communities that have an overlap lower than a certain 

value 

ABS

α . In other words, we will be interested only in those communities having α<ABS  in 

the matrix S . Then, the communities for which α≥ABS  need to be merged together into 

simpler communities. For instance, if there are three communities A, B and C in a network 

having overlaps , 75.0=ABS 85.0=BCS  and 55.0=ACS

5.0

, and if we are interested in those 

communities having overlaps lower than =α , the communities A, B and C need to be 

merged into a single community. If their overlaps were 75.0=ABS ,  and 

 for the same value of 

85.0=BCS

15ACS .0= 5.0=α , then we need to merge the communities A and B 

into a community AB as well as the communities B and C into a community BC. Now, we 

need to analyze the overlap between the newly merged communities AB and BC. If 

α≥BCABS , , then we merge the two communities into a community ABC, but if α<BCABS ,  

we do not. 

The general procedure of managing overlapped communities can be described as 

follows:  

i) Find the communities in the network following the approach described in the 

preceding sections; 
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ii) Calculate ABS  for all pairs of communities found in the previous step and build the 

matrix S ; 

iii) For a given value of α , build the matrix O , whose entries are given by 

A = B;
 OAB =

1 if SAB ≥α,

0 if SAB <α

⎧
⎨
⎪

⎩⎪ ,   or  

iv) If 0O = , go to the end; else go to the step (v); 

v) Enumerate the cliques in the graph whose adjacency matrix is O . Every clique in O  

represents a group of communities with overlaps larger than or equal to α ; 

vi) Build the merged communities by merging the communities represented by the 

nodes forming the cliques found in the step (iv) and go to the step (ii); 

vii) End. 

 

6 An illustrative example: the Zachary karate club 

In the present section, we first demonstrate the method presented in section 3. Next, 

we demonstrate that the inverse temperature introduced in section 4 reveals an internal 

structure of communities. Finally we show how to manage the overlaps among communities. 

For these purposes we consider a friendship network known as the Zachary karate club, 

which has 34 members (nodes) with some friendship relations (links) [27]. The members of 

the club, after some entanglement, were eventually fractioned into two groups, one formed 

by the followers of the instructor and the other formed by the followers of the administrator. 

This network has been analyzed in practically every paper considering the problem of 

community identification in complex networks. In Fig. 2a we illustrate the Zachary network 

in which the nodes are divided into the two classes observed by Zachary on the basis of the 

friendship relationships among the members of the club. 

As mentioned earlier, in the work of Girvan and Newman [11], an almost perfect split 

was obtained for the two groups with the exception of the node 3, which was classified 
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incorrectly. In the Fig. 2b, we illustrate the communicability graph )(GΘ  of the Zachary 

network. As can be seen  correctly divides the network into two groups. There is very 

high internal communicability among the members of the respective groups but there is 

almost no communicability between the groups. In fact, the node 3 is correctly included in 

the group of the instructor (node 1). 

)(GΘ

Insert Fig. 2 about here. 

The analysis of the cliques in the communicability graph reveals a more detailed 

view of the community structure of this network. Accordingly, there are five different 

cliques representing five overlapping communities in the network. These communities are 

given below, where the numbers correspond to the labels of the nodes in Fig. 2a: 

}34,33,32,31,30,29,28,27,26,24,23,21,19,16,15,10{:A

}34,33,32,31,30,29,28,27,24,23,21,19,16,15,10,9{:B

}34,33,32,30,29,28,27,26,25,24,23,21,19,16,15,10{:C

; 

; 

; 

}22,20,18,17,14,13,12,11,8,7,6,5,4,3,2,1{:D ; 

}10,3{:E . 

As can be seen, the first three communities, which correspond to the group of the 

administrator (node 34), are formed by 16 members each, and display an overlap of about 

94%. The fourth community corresponds to the one of the instructor (node 1) and also has 16 

members. The last community is formed by the nodes 3 and 10 only. This community 

displays overlaps with the communities of the administrator as well as with the one of the 

instructor. In fact, the node 10 appears in the communities A to D, and the node 3 appears in 

the communities D and E. In other words, these two nodes form a �bridge� of the 

administrator followers and the instructor followers. Our approach detects this �bridge� as a 
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community. 

Now we illustrate the method of studying the overlaps among the different 

communities in a complex network, which was explained in the previous section. Using the 

information given above about the membership of every node to the different communities in 

the Zackary karate club network, we build the community-overlap matrix S  for this 

network, which is given below: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

000.1

111.0000.1

111.0000.0000.1

111.0000.0875.0000.1

111.0000.0938.0938.0000.1

S . 

For the sake of simplicity, we study the communities with overlapping lower than 

10% ( 10.0=α ). In this case the matrix  is given as follows: O

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0

10

100

1010

10110

O . 

There are two cliques in the graph represented by this adjacency matrix, which corresponds 

to (A, B, C, E) and (D, E). Then we merge the four communities A, B, C and E into one 

community as well as the two communities D and E into another. Let these two communities 

denoted by  and , respectively. Next, the overlap between these two communities is 

only 0.06, which is not larger than 

1C 2C

10.0=α . Thus the new matrix  is simply a zero matrix 

and we stop the process as indicated in the previous section. Then 

O

C ECBA ∪∪∪=1  and 

 are the two communities existing in this network with overlaps less than 10%. EDC ∪=2

Finally, we study the effect of the temperature on the structure of communities in the 
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Zachary social network. For β = 1 , we detect five communities as explained above, and in 

particular, four communities with three or more nodes. By changing β , we detect more or 

less communities. In Fig. 3 we illustrate the number of communities of different sizes 

existing at different values of β . As expected from our theoretical analysis in section 4 at 

0=β , there are no communities as the network is formed by isolated nodes only. However, 

at 1.0=β  there are 9 communities with 3 or more nodes, which increases up to 25 for 

3.0=β . These values of β  represent very low strength of the interaction between the 

nodes. At such values of β , the communities present in the network are formed by very few 

nodes, e.g., by three or four nodes only. As the value of β  increases, the number of 

communities starts to decrease. For instance, at 6.0=β  there are 11 communities and at 

8.0=β  there are only 5 communities. These communities are of larger size and they are 

formed by fusing together the previous small communities observed at very low values of 

β . At 0.1=β  the network is at normal conditions, i.e., it is the network at the real-world 

conditions. In this case, we observe the 4 communities (of more than 3 nodes) previously 

detected for this social network.  

If the value of β  is increased beyond 1.0, the number of communities decreases until 

the whole network forms only one community. For instance, at 1.1=β  there are 3 

communities and at 2.1=β  only 2 communities remain. These two communities 

correspond to the main two factions formed in the karate club, i.e., the administrator and the 

trainer ones. Then, if we increase the inverse temperature over the value 0.1=β , the 

communities of the network at normal conditions are fused together until they form the final 

�all-nodes� community (for a connected network). A similar situation is observed if we 
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analyze the communities with more than 4 or more than 5 nodes (see Fig. 3).  

Insert Fig. 3 about here. 

We can interpret the above result in two ways. First, the �inverse temperature� β  may 

be detecting the �depth of community ties.� As explained in section 4, when β  is large, we 

�overestimate� the contributions of long walks between a pair of nodes; we thereby detect 

wide-range communities which are loosely bound internally. As we decrease β , we focus 

more on short-range ties and hence �dissect� the loosely bound communities. In other words, 

we detect tightly bound communities when β  is small. This is why the number of 

communities increases for small β  in Fig. 3. The decrease around β = 0  is simply caused 

by the fact that we �dissect� communities down to less than 3 nodes. 

In this particular example of the social network, we can perhaps provide a second 

interpretation of the inverse temperature as the �level of stress� at which the network is 

subjected. For instance, the case 0=β  can represent a high level of stress, like a large social 

agitation. At this temperature the network structure is destroyed and every individual 

behaves independently. As the value of β  increases the stress at which the network is 

subjected decreases and several organizations of the society start to appear. In an ideal 

situation of no stress, ∞→β , there is only one community in the network. Consequently, 

the consideration of the parameter β  permits to analyze the characteristics of the 

community structure of a network under different external conditions by considering that 

such conditions affect homogeneously to the nodes of the network. 

 

7 Study of the USA airport network 

In this section we study the airport transportation network in the U.S.A. in 1997 [1]. 
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Each node of the network corresponds to an airport in the U.S.A. Two nodes are connected if 

there is a flight connection between the two airports as of the year 1997. The network is 

formed by 332 airports and 2126 flight connections. Our algorithm of detecting communities 

based on the communicability graph identifies 11 communities from A to K, with different 

degrees of overlapping. The overlap matrix is displayed graphically in Fig. 4. 

Insert Fig. 4 about here. 

Next, we merge overlapping communities by using the procedure explained in section 

5. The procedure detects the existence of 5 communities for α = 0.5 . The first of these 

communities is produced by merging the communities A, B, C, D and K. The second 

community is formed by merging the communities E and F and the third by merging the 

communities I and J. The communities G and H remain as non-overlapped ones. For 

10.0=α , there remain 4 communities as now the second community is formed by merging 

E, F and I. The final communities having less than 10% overlapping after the merging 

procedure are as follows: 

C1 : {A, B,C, D,K};

C2 : E, F, H{ };

C3 : I , J{ };

C4 : G{ }.

 

The overlaps between these communities are given as follows: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

000.1

014.0000.1

014.0000.0000.1

000.0022.0022.0000.1

S . 

The first community is the largest one, formed by 222 airports. The second largest one is  

with 110 nodes. Both communities have no overlap, which makes them interesting for 

4C
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further analysis. 

Indeed, the community  is mainly formed by airports in the west and central states 

of the U.S.A., including Alaskan, Hawaii and pacific ocean airports. The community , on 

the other hand, is mainly formed by airports on the east coast of the U.S.A., Puerto Rico and 

Virgin Islands. There are few airports from the central part of the U.S.A. that are grouped in 

the community  and few airports on the east coast are grouped in the community . In 

Figure 5a, we illustrate the status of the communities  and . It is clear from this figure 

that we succeeded in detecting the communities of the airports according to their 

geographical locations with a few cases of interbreeding due to large east-west 

communication.  

1C

4C

1C4C

1C 4C

Insert Figure 5 about here. 

The communities  and  are smaller than the previous ones, having only 10 and 

11 airports, respectively. Both communities have between 1% and 2% of overlapping with 

the bigger communities. They can be considered as bridges between the bigger communities, 

just as we found in the Zachary karate club. For instance, the community  is formed by 

airports from Wiscosin, Michigan, and Illinois as well as one from New York. The 

community  is formed by airports from Tennessee, Arkansas, North Carolina, Louisiana, 

Mississippi, and Alabama as well as one from Florida. In Figure 5b, we illustrate the 

geographic positions of these airports; they are all in between the two bigger communities 

 and . 

2C 3C

2C

3C

1C 4C

We also tried to detect communities in this network by using the Newman-Girvan 

algorithm. We consider the existence of 2 to 10 communities. This is one of the principal 

disadvantages of this algorithm; it needs the input of the number of communities to be 
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investigated prior to the analysis. The algorithm does not detect any community overlaps. 

The best partition made by this method, according to the value of the modularity Q, was for 

the presence of seven communities (Q = 0.079). Three of these communities divide the 

airports of Alaska into three separate groups. Another community contain airports from 

Mariana Islands, Guam and American Palau. The fifth community groups most of the 

airports of Hawaii, one from American Samoa and Johnston Atoll. The sixth contains only 

two airports from Indiana and the other community groups 278 airports from the continental 

U.S.A. This partition is drastically different from the one reached by using the concept of 

communicability.  

In the communicability-based partition it is clear that the airports in the west coast of 

U.S.A. have very good communicability among them as well as with the airports in Alaska 

and in the pacific. The communicability between the west coast airport and the ones in the 

central area of the U.S.A. is also very large. On the other hand, the communicability between 

the airports in the east part of the U.S.A. is very large among them and it is larger than that 

with the west coast and the central part of the U.S.A. All these results fit our intuition very 

well. In striking contrast, the Newman-Girvan algorithm groups all continental airports but 2 

of the six airports of Indiana in one single community. This grouping is obviously not very 

informative about the organisation of the airport system in the U.S.A. 

These analyses do not take into account the amount of flights between airports but only 

the existence of the connection between the airports. Considering this additional information 

can change radically this analysis. 
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6 Summary 

In summary, we introduced here an algorithm of community detection in complex networks, 

using the concept of the communicability graph. The algorithm we developed here is based 

on detection of the cliques in the communicability graph. No internal or empirical parameters 

are needed in order to find all communities in a complex network at �normal� conditions. 

This method also gives the overlaps among the existing communities in the graph. We then 

present a procedure of merging the overlapping communities. 

In addition, we introduced a parameter, the inverse temperature, which allows us to 

understand the characteristics of the community structure of a complex network under 

different external conditions. These external conditions are assumed to affect all the nodes of 

the network in a similar way and they can represent different conditions in different contexts. 

In the case of social networks, in particular, the inverse temperature appears to be a sort of 

the stress at which the society is subjected. The number and size of the communities change 

systematically with the changes of the inverse temperature of the network. 

After demonstrating our algorithm of community detection in the Zachary karate club, 

we analyzed the airport network in the U.S.A. After proper merging, we successfully 

detected four communities that are geographically clustered. This was in surprising contrast 

to the community detected by the Newman-Girvan algorithm. 

Acknowledgements 

EE thanks Institute of Industrial Science, University of Tokyo for a fellowship as a Visiting 

Researcher and for warm hospitality during April-June, 2008. EE also thanks partial 

financial support from the New Professor�s Fund given by the Principal, University of 

Strathclyde. 

 26



References 

[1] V. Batagelj, A. Mrvar, Pajek Datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/. 

[2] M. Bomze, M. Budinich, P. M. Pardalos, M. Pelillo, in: D.-Z. Du and P. M. Pardalos 

(Eds.), Handbook of Combinatorial Optimization, Supplement Vol. A., Kluwer, 

Dordrecht 1999,  pp. 1-74. 

[3] C. Bron, J. Kerbosch, Algorithm 457: finding all cliques of an undirected graph, 

Comm. ACM 16 (1973) 575-577. 

[4] A. Capocci, V. D. P. Servedio, G. Caldarelli, F. Colaiori, Detecting communities in 

large networks, Physica A 352 (2005) 669-676. 

[5] D. Cvetković, P. Rowlinson, S. Simić, Eigenspaces of Graphs, Cambridge University 

Press, Cambridge, 1997. 

[6] L. Danon, J. Duch, A. Diaz-Guilera, A. Arenas, Comparing community structure 

identification, J. Stat. Mech.: Theory Exp. (2005) P09008. 

[7] J. Duch, A. Arenas, Community detection in complex networks using extremal 

optimization, Phys. Rev. E. 72 (2005) 027104.  

[8] E. Estrada, N. Hatano, Communicability in complex networks, Phys. Rev. E. 77 

(2008) 036111. 

[9] M. Filippone, F. Camastra, F. MAsulli, S. Rovetta, A survey of kernel and spectral 

methods for clustering, Pattern Recog., 41 (2008) 176-190.  

[10] G. Gan, C. Ma, J. Wu, Data Clustering: Theory, Algorithms, and Applications, 

SIAM, Philadelphia, PA (2007). 

[11] M. Girvan, M. E. J. Newman, Community structure in social and biological 

networks, Proc. Natl. Ac. Sci. USA 99 (2002) 7821-7826. 

 27



[12] R. Guimera, L. A. N. Amaral, Functional cartography of complex metabolic 

networks, Nature 433 (2005) 895-900. 

[13] F. Harary, Graph Theory, Addison Wesley, Reading, MA, 1969. 

[14] B. W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs, The 

Bell System Technical Journal 49 (1970) 291-307. 

[15] I. Koch, Enumerating all connected maximal common subgraphs in two graphs, 

Theor. Comput. Sci. 250 (2001) 1-30. 

[16] M. E. J. Newman, The structure and function of complex networks, SIAM Rev. 45 

(2003) 167-256. 

[17] M. E. J. Newman, Detecting community structure in networks, Eur. Phys. J. B 38 

(2004) 321-330. 

[18] M. E. J. Newman, Fast algorithm for detecting community structure in networks, 

Phys. Rev. E. 69 (2004) 066133. 

[19] M. E. J. Newman, Finding community structure in networks using the eigenvectors 

of matrices, Phys. Rev. E. 74 (2006) 036104. 

[20] G. Palla, I. Derenyi, I. Farkas, T. Vicsek, Uncovering the overlapping community 

structure of complex networks in nature and society, Nature 435 (2005) 814-818. 

[21] P. M. Pardalos, J. Xue, The maximum clique problema, J. Global Opt., 4 (1994) 

301-328. 

[22] M. A. Porter, J.-P. Onnela, P. J. Mucha, Communities in networks, arXiv: 

0902.3788vl. 

[23] T. Sørensen, A method of establishing groups of equal amplitude in plant sociology based on 

similarity of species and its application to analyzes of the vegetation on Danish commons, 

Biologiske Skrifter, 5 (1948) 1-34. 

 28



[24] E. Tomita, A. Tanaka, H. Takahashi, The worst-case time complexity for generating 

all maximal cliques and computational experiments, Theor. Comput. Sci. 363 (2006) 

28-42. 

[25] X. Wang, G. Chen, H. Lu, A very fast algorithm for detecting community structures 

in complex networks, Physica A 384 (2007) 667-674. 

[26] S. Wasserman, K. Faust, Social Network Analysis. Methods and Applications, 

Cambridge University Press, 1994. 

[27] W.W. Zachary, An information flow model for conflict and fission in small groups, J. 

Anthropol. Res. 33 (1977) 452-473. 

 

 29



Figure captions 

Fig. 1. Plot of the CPU time (sec) for sparse locally random graphs with the use of the 

algorithm according to Tomita et al [24]. (a) CPU time as a function of the number of nodes 

for graphs with average degree 10=k . (b) CPU time as a function of the average degree 

for graphs having 10,000 nodes. The data used in the plots is taken from ref. [24]. 

Fig. 2. Representation of the social network of the Zachary karate club. (a) The two factions 

formed after the entanglement are represented as squares or circles, respectively. (b) The 

communicability graph for the Zackary karate club. 

Fig. 3. Plot of the number of communities of three different sizes for different values of the 

inverse temperature, β . 

Fig. 4. Graphical representation of the overlapping matrix for the 11 communities detected 

by the communicability-based algorithm in the USA airport transportation network of 1997. 

Fig 5. (a) Geographical locations of the communities of airports identified by the 

communicability-based algorithm for 10% of overlapping. The light grey area represents the 

locations of the airports in the community  and the dark grey area represents the ones in 

the community . Light (dark) grey dots represent the airports that are located in the 

western/central (eastern) states but grouped in the community  ( ). (b) A geographical 

representation of the airports in the communities  (light grey) and  (dark grey). 
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