Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Measurement of arsenic and gallium content of gallium arsenide semiconductor waste streams by ICP-MS

Torrance, K. and Keenan, H.E. and Hursthouse, A.S. and Stirling, D. (2010) Measurement of arsenic and gallium content of gallium arsenide semiconductor waste streams by ICP-MS. Journal of Environmental Science and Health Part A, 45 (4). pp. 471-475. ISSN 1093-4529

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The chemistry of semiconductor wafer processing liquid waste, contaminated by heavy metals, was investigated to determine arsenic content. Arsenic and gallium concentrations were determined for waste slurries collected from gallium arsenide (GaAs) wafer processing at three industrial sources and compared to slurries prepared under laboratory conditions. The arsenic and gallium content of waste slurries was analyzed using inductively coupled plasma mass-spectrometry (ICP-MS) and it is reported that the arsenic content of the waste streams was related to the wafer thinning process, with slurries from wafer polishing having the highest dissolved arsenic content at over 1,900mgL-1. Lapping slurries had much lower dissolved arsenic (<90mgL-1) content, but higher particulate contents. It is demonstrated that significant percentage of GaAs becomes soluble during wafer lapping. Grinding slurries had the lowest dissolved arsenic content at 15mgL-1.