Numerical solutions of neutral stochastic functional differential equations
Wu, Fuke and Mao, Xuerong, Chinese Scholarship Council (Funder) (2008) Numerical solutions of neutral stochastic functional differential equations. SIAM Journal on Numerical Analysis, 46 (4). pp. 1821-1841. ISSN 0036-1429 (https://doi.org/10.1137/070697021)
Preview |
PDF.
Filename: 161_SIAM_Num_Mao.pdf
Accepted Author Manuscript Download (228kB)| Preview |
Abstract
This paper examines the numerical solutions of neutral stochastic functional differential equations (NSFDEs) $d[x(t)-u(x_t)]=f(x_t)dt+g(x_t)dw(t)$, $t\geq 0$. The key contribution is to establish the strong mean square convergence theory of the Euler-Maruyama approximate solution under the local Lipschitz condition, the linear growth condition, and contractive mapping. These conditions are generally imposed to guarantee the existence and uniqueness of the true solution, so the numerical results given here are obtained under quite general conditions. Although the way of analysis borrows from [X. Mao, LMS J. Comput. Math., 6 (2003), pp. 141-161], to cope with $u(x_t)$, several new techniques have been developed.
ORCID iDs
Wu, Fuke and Mao, Xuerong ORCID: https://orcid.org/0000-0002-6768-9864;-
-
Item type: Article ID code: 13830 Dates: DateEvent16 April 2008PublishedSubjects: Science > Mathematics Department: Faculty of Science > Mathematics and Statistics Depositing user: Mrs Carolynne Westwood Date deposited: 17 Dec 2009 16:29 Last modified: 16 Jan 2025 01:49 URI: https://strathprints.strath.ac.uk/id/eprint/13830