Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Surface functionalization of polyurethane for the immobilization of bioactive moieties on tissue scaffolds

Jozwiak, A.B. and Kielty, C.M. and Black, R.A. (2008) Surface functionalization of polyurethane for the immobilization of bioactive moieties on tissue scaffolds. Journal of Materials Chemistry, 18 (19). pp. 2240-2248. ISSN 0959-9428

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Segmented polyurethanes are widely used in medical devices because of their desirable physical and chemical properties and proven biocompatibility. While polyurethane is in many respects an ideal tissue scaffold, its performance is no better than other synthetic polymers, which is due in part to its surface properties. Here, we describe a method for the functionalization of polyurethane scaffolds that involves physically incorporating another polymer (poly(ethyleneimine)) such that the surface integrity and bulk properties are retained; the primary amine groups thus incorporated into the polyurethane surface enable subsequent coupling with dextran and recombinant peptides by means of reductive amination. The efficacy of the surface functionalization of a medical grade aliphatic poly(ether)urethane is verified by surface analysis (secondary ion mass spectrometry) and fluorescence and spectrophotometric assays adapted specifically for this purpose. Further assessment of the surfaces by direct cell contact and analysis of the cellular response in terms of cell coverage and morphology before and after modification with the specific peptide sequences GRGDSPK and recombinant Fibrillin-1 fragment PF9.