Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Predicting the adsorption of gas mixtures: adsorbed solution theory versus classical density functional theory

Sweatman, M.B. and Quirke, N. (2002) Predicting the adsorption of gas mixtures: adsorbed solution theory versus classical density functional theory. Langmuir, 18 (26). pp. 10443-10454. ISSN 0743-7463

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Accurate prediction of the adsorption properties of fluid mixtures in equilibrium with surfaces and/or nanoporous structures is of considerable scientific and practical importance. Often, while the pure fluid adsorption isotherms are known for each component, those for the mixture are not. Using data from Monte Carlo simulations of model mixtures (including hydrogen and carbon dioxide) adsorbed in graphitic slit pores, for a range of pressures to 1000 bar, we compare theories for mixed adsorption which require pure fluid isotherm data as input. In particular, we develop and evaluate methods based on adsorbed solution theory (AST) and classical density functional theory (DFT). We find that a novel approximate DFT-based model is generally more accurate than AST methods in predicting the adsorption isotherms of mixtures of simple gases.