Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Pulsed electric field treatment as a potential method for microbial inactivation in scaffold materials for tissue engineering: the inactivation of bacteria in collagen gel

Griffiths, S. and Smith, S. and MacGregor, S.J. and Anderson, J.G. and van der Walle, Christopher F. and Beveridge, J.R. and Grant, Helen (2008) Pulsed electric field treatment as a potential method for microbial inactivation in scaffold materials for tissue engineering: the inactivation of bacteria in collagen gel. Journal of Applied Microbiology, 105 (4). pp. 963-969.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

To investigate the effectiveness of pulsed electric field (PEF) treatment as a new method for inactivation of micro-organisms in complex biomatrices and to assess this by quantifying the inactivation of Escherichia coli seeded in collagen gels. PEF was applied to E. coli seeded collagen gels in static (nonflowing) chambers. The influence of electric field strength, pulse number and seeded cell densities were investigated. The highest level of inactivation was obtained at the maximum field strength of 45 kV cm−1. For low levels of E. coli contamination (103 CFU ml−1), PEF treatment resulted in no viable E. coli being recovered from the gels. However, PEF treatment of gels containing higher cell densities (≥104 CFU ml−1) did not achieve complete inactivation of E. coli. PEF treatment successfully inactivated E. coli seeded in collagen gels by 3 log10 CFU ml−1. Complete inactivation was hindered at high cell densities by the tailing effect observed. PEF shows potential as a novel, nondestructive method for decontamination of collagen-based matrices. Further investigation is required to ensure its compatibility with other proteins and therapeutic drugs for tissue engineering and drug delivery applications.