Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Enzymes involved in the metabolism of gamma-hydroxybutyrate in SH-SY5Y cells: Identification of an iron-dependent alcohol dehydrogenase ADHFe1

Lyon, Robert C. and Johnston, Stuart M. and Panopoulos, Andraes and Alzeer, Samar and McGarvie, Gail and Ellis, Elizabeth M. (2009) Enzymes involved in the metabolism of gamma-hydroxybutyrate in SH-SY5Y cells: Identification of an iron-dependent alcohol dehydrogenase ADHFe1. Chemico-Biological Interactions, 178 (1-3). pp. 283-287. ISSN 0009-2797

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The metabolism of the endogenous metabolite γ-hydroxybutyrate (GHB) has been studied in a human neuroblastoma cell line SH-SY5Y as a model for examining neuronal metabolism. We show that GHB can be synthesized and released from these cells, indicating that pathways for GHB synthesis and secretion are present. Activities for the major enzymes that are involved in GHB metabolism are reported, and transcripts for AKR1A1, AKR7A2, ALDH5A1 and GABA-T can be detected by RT-PCR. We also demonstrate the presence of the ADHFe1 transcript, a gene that has been reported to encode a hydroxyacid-oxoacid transhydrogenase (HOT). We show that the ADHFe1 gene is related to bacterial GHB dehydrogenases and has a conserved NAD-binding site. The potential for using the SH-SY5Y cell line for investigating GHB catabolism is discussed.