Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Acanthamoeba alternative oxidase genes : identification, characterisation and potential as antimicrobial targets

Henriquez, Fiona L. and McBride, James and Campbell, Sara J. and Ramos, Tania and Ingram, Paul R. and Roberts, F. and Tinney, Sinead and Roberts, C.W. (2009) Acanthamoeba alternative oxidase genes : identification, characterisation and potential as antimicrobial targets. International Journal for Parasitology, 39 (13). pp. 1417-1424. ISSN 0020-7519

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Alternative oxidase (AOX) is a mitochondrial protein that acts as an alternative terminal oxidase to the conventional cytochrome oxidases. It is present in certain prokaryotes, plants, fungi and some protozoa but absent in mammals. AOX activity has previously been described in Acanthamoeba, although no genetic evidence has been reported. Herein, two AOX (AcAOX) genes designated isoforms A and B, were obtained from Acanthamoeba castellanii by a combination of degenerate PCR from cDNA and a series of 5′ and 3′ rapid amplification of cDNA ends. The corresponding genomic sequences of these AcAOXs were also obtained. Each gene spans six exons over a region of 1607 and 1619 bp, respectively. Isoforms A and B have open reading frames of 1113 and 1125 bp, respectively. Each encodes a protein with a predicted molecular weight of 42 kDa. Each AcAOX protein has a predicted cleavable mitochondrial targeting sequence. The full-length AcAOX is functionally active as it complements hemL-deficient Escherichia coli and inhibited by the inhibitor of AOX, salicylhydroxamic acid (SHAM). SHAM is effective against A. castellanii and Acanthamoeba polyphaga only when used in conjunction with antimycin A, an inhibitor of the conventional cytochrome respiratory pathway. Transcripts for AcAOX are increased during the encystment process, indicating a possible role for alternative respiration during stress.