Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Caged AG10: new tools for spatially predefined mitochondrial uncoupling

Avionitis, N. and Chalmers, S. and McDougall, C. and Stanton-Humphreys, M.N. and Brown, C.T.A. and McCarron, J.G. and Conway, S.J. (2009) Caged AG10: new tools for spatially predefined mitochondrial uncoupling. Molecular BioSystems, 5. pp. 450-457. ISSN 1742-206X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The study of mitochondria and mitochondrial Ca2+ signalling in localised regions is hampered by the lack of tools that can uncouple the mitochondrial membrane potential (m) in a spatially predefined manner. Although there are a number of existing mitochondrial uncouplers, these compounds are necessarily membrane permeant and therefore exert their actions in a spatially unselective manner. Herein, we report the synthesis of the first caged (photolabile protected) mitochondrial uncouplers, based on the tyrphostin AG10. We have analysed the laser photolysis of these compounds, using 1H NMR and HPLC, and demonstrate that the major product of caged AG10 photolysis is AG10. It is shown that photolysis within single smooth muscle cells causes a collapse of m consistent with photorelease of AG10. Furthermore, the effect of the photoreleased AG10 is localised to a subcellular region proximal to the site of photolysis, demonstrating for the first time spatially predefined mitochondrial uncoupling.