Picture of rolled up £5 note

Open Access research that shapes economic thinking...

Strathprints makes available scholarly Open Access content by the Fraser of Allander Institute (FAI), a leading independent economic research unit focused on the Scottish economy and based within the Department of Economics. The FAI focuses on research exploring economics and its role within sustainable growth policy, fiscal analysis, energy and climate change, labour market trends, inclusive growth and wellbeing.

The open content by FAI made available by Strathprints also includes an archive of over 40 years of papers and commentaries published in the Fraser of Allander Economic Commentary, formerly known as the Quarterly Economic Commentary. Founded in 1975, "the Commentary" is the leading publication on the Scottish economy and offers authoritative and independent analysis of the key issues of the day.

Explore Open Access research by FAI or the Department of Economics - or read papers from the Commentary archive [1975-2006] and [2007-2018]. Or explore all of Strathclyde's Open Access research...

Structural Studies of the Chiral Lithium Amides [{PhC(H)Me}2NLi] and [PhCH2{PhC(H)Me}NLi.THF Derived from a-Methybenzylamine

Armstrong, D.R. and Henderson, K.W. and Kennedy, A.R. and Kerr, W.J. and Mair, F.S. and Moir, J.H. and Moran, P.H. and Snaith, R. (1999) Structural Studies of the Chiral Lithium Amides [{PhC(H)Me}2NLi] and [PhCH2{PhC(H)Me}NLi.THF Derived from a-Methybenzylamine. Journal of the Chemical Society, Dalton Transactions, 1999 (22). pp. 4063-4068. ISSN 0300-9246

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Reaction of (R,R)- or (S,S)-bis(1-phenylethyl)amine with nBuLi in hexane solution gave the chiral amide [{PhC(H)Me}2NLi] 1. Complex 1 crystallises with approximate D3 symmetry as a ring trimer (13) from hexane solution, as determined by X-ray crystallography. In direct contrast to the crystal structure of the related compound dibenzylamidolithium, [{(PhCH2)2NLi}3], no significant agostic Li· · ·C(H) contacts are present in 13. Solution 1H and 7Li NMR spectra of 1 in d8-toluene show the presence of two distinct aggregated species which have been assigned as a trimer and a monomer. The complex [PhCH2{PhC(H)Me}NLi·THF] 2·THF, was prepared by reaction of nBuLi with (R)-N-benzyl--methylbenzylamine in a hexane-THF solution and has been determined by X-ray crystallography to adopt a dimeric structure (22·2THF) in the solid state with C1 symmetry. As in 13, no short Li· · ·C(H) contacts are present in 22·2THF. The lack of Li· · ·C(H) interactions in both 13 and 22·2THF suggests that the rotameric conformations adopted for the benzyl groups in the complexes are governed mainly by steric effects. Using ab initio molecular orbital calculations (HF/6-31G*), the minimum energy structure for unsolvated monomeric 11 was determined to be a C2 symmetric molecule, I, where the faces of both phenyl groups are directed towards the metal, maximising the Li-aromatic interactions. The related C2 symmetric molecule with both methyl groups directed towards the metal is 8.68 kcal mol-1 less stable than I. Therefore, in the absence of aggregation and external solvation, significant stabilisation is achieved through Li· · ·C(H) benzyl interactions. The energy barrier to rotation for one benzyl sidearm for geometry I is 4.76 kcal mol-1, representing a significant lifetime for this conformer.