Dynamic electrochemical model of an alkaline fuel cell stack

Duerr, M. and Gair, S. and Cruden, A.J. and McDonald, J.R. (2007) Dynamic electrochemical model of an alkaline fuel cell stack. Journal of Power Sources, 171 (2). pp. 1023-1032. ISSN 0378-7753 (https://doi.org/10.1016/j.jpowsour.2007.06.011)

Full text not available in this repository.Request a copy


The Institute for Energy and Environment (IEE) at the University of Strathclyde has developed various fuel cell (FC) systems for stationary and vehicular applications. In particular the author is involved in the development of alkaline fuel cell (AFC) systems. To understand the dynamic behaviour of the system's key element, the alkaline fuel cell stack, a dynamic model was developed allowing the characterisation of the electrochemical parameters. The model is used to forecast the behaviour of the fuel cell stack under various dynamic operating conditions. The so-called Nernst potential, which describes the open circuit voltage of the stack, is calculated using thermodynamic theory. Electrochemistry theory has been used to model the sources of the electric losses within the FC, such as activation, ohmic and concentration losses. The achievable value of this paper is the first publication of a detailed dynamic AFC based on mass balance, thermodynamics and electrochemical theory. The effects of the load changes on various fuel cell parameters, such as electrolyte concentration and concentrations of dissolved hydrogen and oxygen were covered in this investigation using the author's model. The model allows a detailed understanding of the dynamic effects within the AFC during load change events, which lead to the experienced electric response of the overall FC stack.


Duerr, M., Gair, S., Cruden, A.J. and McDonald, J.R. ORCID logoORCID: https://orcid.org/0000-0002-7078-845X;