Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

The effect of pipelining feedback loops in high speed DSP systems

Alexander, S.W. and Stewart, R.W. (2005) The effect of pipelining feedback loops in high speed DSP systems. In: UNSPECIFIED.

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Many of today’s Electronic Design Automation (EDA) tools include Intellectual Property (IP) cores that are fully pipelined to increase data throughput. Using these cores to implement data paths that do not involve feedback can result in fast, efficient designs. However, if they are used within a feedback loop this is not always the case. This paper examines the effects that using pipelined cores in feedback loops can have on a design. By considering two designs that implement a Givens rotation using feedback, which is used in QR decomposition [1], it is shown that, even though a pipelined design can be clocked faster, its data throughput is less than a non-pipelined design. Also, the non-pipelined design is shown to be smaller and consumes less power. Finally, a suggestion for a more efficient use of pipelining in feedback loops is presented, based on channel interleaving [2].