Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

Polymorphism in 2-4-6 trinitrotoluene

Vrcelj, R.M. and Sherwood, J.N. and Kennedy, A.R. and Gallagher, Hugh Gerald and Gelbrich, T. (2003) Polymorphism in 2-4-6 trinitrotoluene. Crystal Growth and Design, 3 (6). pp. 1027-1032. ISSN 1528-7483

Full text not available in this repository. Request a copy from the Strathclyde author


Two crystal structures of 2-4-6 trinitrotoluene (TNT) are given, the monoclinic form (a0 ) 1.49113 (1) nm, b0 ) 0.60340 (1) nm, c0 ) 2.08815(3) nm, â ) 110.365 (1)°, V ) 1.76137 (4) nm3, space group ) P21/a, T ) 100 K) and the orthorhombic form (a0 ) 1.4910 (2) nm, b0 ) 0.6031 (2) nm, c0 ) 1.9680 (4) nm, V ) 1.7706 (7) nm3, space group ) Pca21, T ) 123 K). Of these two forms, the most stable is the monoclinic and the less stable is the orthorhombic form. These two polymorphs are shown to be orientational, rather than configurational in character. Due to their restricted molecular motifs, no strong hydrogen bonding exists and the crystalline form is dominated by van der Waals type forces. The two structures are shown to be closely related and an analysis of the two structures shows that they are effectively large scale polytypes. Calorimetric studies show that the two polymorphs are monotropic and that the enthalpy of transformation is very low, concurring with the similarity shown by the diffraction data and calculated lattice energies. The thermal expansion coefficients are defined, and it is shown that both polymorphs have similar thermal expansions.