Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Sodium stibogluconate resistance in leishmania donovani correlates with greater tolerance to macrophage antileishmanial responses and trivalent antimony therapy

Carter, K.C. and Hutchison, S. and Boitelle, A. and Murray, H.W. and Sundar, S. and Mullen, A. (2005) Sodium stibogluconate resistance in leishmania donovani correlates with greater tolerance to macrophage antileishmanial responses and trivalent antimony therapy. Parasitology, 131 (6). pp. 747-757. ISSN 0031-1820

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Co-treatment of mice infected with different strains of Leishmania donovani with a non-ionic surfactant vesicle formulation of buthionine sulfoximine (BSO-NIV), and sodium stibogluconate (SSG), did not alter indicators of Th1 or Th2 responses but did result in a significant strain-independent up-regulation of IL6 and nitrite levels by stimulated splenocytes from treated mice compared to controls. The efficacy of BSO-NIV/SSG treatment was dependent on the host being able to mount a respiratory burst indicating that macrophages are important in controlling the outcome of treatment. In vitro studies showed that SSG resistance was associated with a greater resistance to killing by activated macrophages, treatment with hydrogen peroxide or potassium antimony tartrate. Longitudinal studies showed that a SSG resistant (SSG-R) strain was more virulent than a SSG susceptible (SSG-S) strain, resulting in significantly higher parasite burdens by 4 months post-infection. These results indicate that SSG exposure may favour the emergence of more virulent strains.