Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Symmetrical and unsymmetrical analogues of isoxyl; active agents against mycobacterium tuberculosis

Bhowruth, V. and Brown, A.K. and Reynolds, R.C. and Coxon, G.D. and Mackay, S.P. and Minnikin, D.E. and Besra, G.S. (2006) Symmetrical and unsymmetrical analogues of isoxyl; active agents against mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 16 (18). pp. 4743-4747. ISSN 0960-894X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Symmetrical and unsymmetrical analogues of the antimycobacterial agent isoxyl-have been synthesized and tested against Mycobacterium tuberculosis H37Rv and Mycobacterium bovis BCG, some showing an increased bactericidal effect. In particular, compounds 1-(p-n-butylphenyl)-3-(4-propoxy-phenyl) thiourea (10) and 1-(p-n-butylphenyl)-3-(4-n-butoxy-phenyl) thiourea (11) showed an approximate 10-fold increase in in vitro potency compared to isoxyl, paralleled by increased inhibition of mycolic acid biosynthesis in M. bovis BCG. Interestingly, these isoxyl analogues showed relatively poor inhibition of oleate production, suggesting that the modifications have changed the spectrum of biological activity.