Picture of classic books on shelf

Literary linguistics: Open Access research in English language

Strathprints makes available Open Access scholarly outputs by English Studies at Strathclyde. Particular research specialisms include literary linguistics, the study of literary texts using techniques drawn from linguistics and cognitive science.

The team also demonstrates research expertise in Renaissance studies, researching Renaissance literature, the history of ideas and language and cultural history. English hosts the Centre for Literature, Culture & Place which explores literature and its relationships with geography, space, landscape, travel, architecture, and the environment.

Explore all Strathclyde Open Access research...

Discovery and biological evaluation of the novel naturally occurring diterpene pepluanone as antiinflammatory agent

Corea, G. and Fattorusso, E. and Lanzotti, V. and Di Meglio, P. and Maffia, P. and Grassia, G. and Ialenti, A. and Ianaro, A. (2005) Discovery and biological evaluation of the novel naturally occurring diterpene pepluanone as antiinflammatory agent. Journal of Medicinal Chemistry, 48 (22). pp. 7055-7062. ISSN 0022-2623

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

From the whole plant of Euphorbia peplus L., a new diterpene based on a rare pepluane skeleton, named pepluanone (1), was isolated together with a known pepluane diterpene (2). The stereostructure of pepluanone was determined on the basis of an extensive NMR study, MS data, and chemical reaction. The ability of these compounds to act as antiinflammatory agents has been evaluated for the first time by in vivo tests on carrageenin-induced rat paw edema, an experimental model of acute inflammation. Comparison of the bioactivity of pepluanone and compound 2 in terms of chemical structure, evidenced the high efficiency of pepluanone and the absence of appreciable activity for compound 2, thus giving a first insight into the structure−activity relationship. Further in vitro experiments performed on pepluanone let us hypothesize that its activity could be explained in reducing the production of nitric oxide, prostaglandin E2, and TNF-α by inhibiting the expression of inducible nitric oxide synthase, cyclooxygenase-2, and TNF-α mRNA through the down-regulation of NF-κB binding activity.