Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

Discovery and biological evaluation of the novel naturally occurring diterpene pepluanone as antiinflammatory agent

Corea, G. and Fattorusso, E. and Lanzotti, V. and Di Meglio, P. and Maffia, P. and Grassia, G. and Ialenti, A. and Ianaro, A. (2005) Discovery and biological evaluation of the novel naturally occurring diterpene pepluanone as antiinflammatory agent. Journal of Medicinal Chemistry, 48 (22). pp. 7055-7062. ISSN 0022-2623

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

From the whole plant of Euphorbia peplus L., a new diterpene based on a rare pepluane skeleton, named pepluanone (1), was isolated together with a known pepluane diterpene (2). The stereostructure of pepluanone was determined on the basis of an extensive NMR study, MS data, and chemical reaction. The ability of these compounds to act as antiinflammatory agents has been evaluated for the first time by in vivo tests on carrageenin-induced rat paw edema, an experimental model of acute inflammation. Comparison of the bioactivity of pepluanone and compound 2 in terms of chemical structure, evidenced the high efficiency of pepluanone and the absence of appreciable activity for compound 2, thus giving a first insight into the structure−activity relationship. Further in vitro experiments performed on pepluanone let us hypothesize that its activity could be explained in reducing the production of nitric oxide, prostaglandin E2, and TNF-α by inhibiting the expression of inducible nitric oxide synthase, cyclooxygenase-2, and TNF-α mRNA through the down-regulation of NF-κB binding activity.