Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Structural and optical properties of InGaN/GaN layers close to the critical layer thickness

PEREIRA, SERGIO MANUEL DE SOUSA and Correia, M.R. and Pereira, Eduarda and Trager-Cowan, Carol and Sweeney, Francis and O'Donnell, Kevin and Alves, E. and Franco, N. and Sequeira, A.D. (2002) Structural and optical properties of InGaN/GaN layers close to the critical layer thickness. Applied Physics Letters, 81 (7). p. 1207.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this work, we investigate structural and optical properties of metalorganic chemical vapor deposition grown wurtzite InxGa1−xN/GaN epitaxial layers with thicknesses that are close to the critical layer thickness (CLT) for strain relaxation. CLT for InxGa1−xN/GaN structures was calculated as a function of the InN content, x, using the energy balance model proposed by People and Bean [Appl. Phys. Lett. 47, 322 (1985)]. Experimentally determined CLT are in good agreement with these calculations. The occurrence of discontinuous strain relaxation (DSR), when the CLT is exceeded, is revealed in the case of a 120 nm thick In0.19Ga0.89N layer by x-ray reciprocal space mapping of an asymmetrical reflection. The effect of DSR on the luminescence of this layer is clear: The luminescence spectrum shows two peaks centered at ∼2.50 and ∼2.67 eV, respectively. These two components of the luminescence of the sample originate in regions of different strain, as discriminated by depth-resolving cathodoluminescence spectroscopy. DSR leads directly to the emergence of the second, lower-energy, peak. Based on this experimental evidence, it is argued that the appearance of luminescence doublets in InGaN is not evidence of “quantum dotlike In-rich” or “phase separated” regions, as commonly proposed.