Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Mechanism of olefin hydrosilylation catalyzed by ruCI2(CO)2(PPh3)2

Tuttle, C.T. and Wang, D. and Thiel, W. and Weis, J. and Kohler, J. and Hofmann, M. (2006) Mechanism of olefin hydrosilylation catalyzed by ruCI2(CO)2(PPh3)2. Organometallics, 25. pp. 4504-4513. ISSN 0276-7333

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Density functional theory (DFT) was used to explore the different mechanistic possibilities for the hydrosilylation reaction between methyldimethoxysilane and methylvinyldimethoxysilane catalyzed by the Ru(II) complex dicarbonyldichlorobis(triphenylphosphine)ruthenium(II) (A1). Reaction enthalpy profiles of the Chalk−Harrod, modified Chalk−Harrod, and σ-bond metathesis mechanisms were computed for several different active forms of A1. A total of 10 different pathways with different catalytic cycles and different induction steps were compared. We predict that a σ-bond metathesis mechanism involving the formation of a hydride analogue of A1 is most favored, in contrast to the commonly accepted Chalk−Harrod mechanism of hydrosilylation. The B3LYP-calculated activation energy within the catalytic cycle (ΔHact = 21.8 kcal/mol) is small enough to make A1 a reasonable catalyst for this reaction under the normally applied experimental conditions