Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Non-linear autopilot design using the philosophy of variable transient response

Counsell, John M. and Brindley, Joseph and Macdonald, M. (2009) Non-linear autopilot design using the philosophy of variable transient response. In: AIAA Guidance, Navigation and Control Conference, 2009-08-10 - 2009-08-13.

[img]
Preview
PDF (strathprints009813.pdf)
strathprints009813.pdf

Download (813kB) | Preview

Abstract

The novel non-linear controller design methodology of Variable Transient Response (VTR) is presented in this research. The performance of VTR is compared to that of successful non-linear controller designs (such as Robust Inverse Dynamics Estimation and a traditional autopilot design) by application to a non-linear missile model. The simulated results of this application demonstrate that the inclusion of VTR into the RIDE design results in a 50% improvement in response time and 100% improvement in settling time whilst achieving stable and accurate tracking of a command input. Analysis demonstrates that VTR dynamically alters the system's damping, resulting in a non-linear response. The system stability is analysed during actuator saturation using non-linear stability criteria. The results of this analysis show that the inclusion of VTR into the RIDE design does not compromise non-linear system stability.