Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

A Mizuno-Todd-Ye type predictor-corrector algorithm for sufficient linear complimentarity problems

Illes, T. and Nagy, M. (2007) A Mizuno-Todd-Ye type predictor-corrector algorithm for sufficient linear complimentarity problems. European Journal of Operational Research, 181 (3). pp. 1097-1111. ISSN 0377-2217

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We analyze a version of the Mizuno-Todd-Ye predictor-corrector interior point algorithm for the -matrix linear complementarity problem (LCP). We assume the existence of a strictly positive feasible solution. Our version of the Mizuno-Todd-Ye predictor-corrector algorithm is a generalization of Potra's [F.A. Potra, The Mizuno-Todd-Ye algorithm in a larger neighborhood of the central path, European Journal of Operational Research 143 (2002) 257-267] results on the LCP with -matrices. We are using a v−1 − v proximity measure like Potra to derive iteration complexity result for this algorithm . Our algorithm is different from Miao's method [J. Miao, A quadratically convergent -iteration algorithm for the P*(κ)-matrix linear complementarity problem, Mathematical Programming 69 (1995) 355-368] in both the proximity measure used and the way of updating the centrality parameter. Our analysis is easier than the previously stated results. We also show that the iteration complexity of our algorithm is .