Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Investigation into diode pumped modelocked ND based laser oscillators for the CLIC photoinjector system

Valentine, G.J. and Burns, D. and Bente, E.A.J.M. (2001) Investigation into diode pumped modelocked ND based laser oscillators for the CLIC photoinjector system. In: Proceedings IEEE/LEOS Annual Symposium. Vrije Universiteit Brussel, Brussel. ISBN 90-5487247-0

[img]
Preview
PDF (strathprints009068.pdf)
strathprints009068.pdf

Download (202kB)| Preview

    Abstract

    The photo-injector system envisaged for the proposed CLIC linear e+-e- accelerator at CERN has a demanding set of specifications on output pulse structure, power and timing stability. This paper reports on results obtained with quasi-CW diode pumped laser oscillators with output stabilisation. A 300W 804nm diode array stack is used to side pump Nd:YLF (1047nm) crystals with 200μs pulses at 100Hz repetition rate. Using feedback from the laser output to control an acousto-optic loss modulator in the cavity, start-up spiking and Q-switched behaviour is suppressed. Preliminary results obtained on incorporation of a saturable absorbing mirror for passive modelocking are presented.