Estimating binding energies of π-stacked aromatic dimers using force field-driven molecular dynamics

Doveiko, Daniel and Kubiak-Ossowska, Karina and Chen, Yu (2024) Estimating binding energies of π-stacked aromatic dimers using force field-driven molecular dynamics. International Journal of Molecular Sciences, 25 (11). 5783. ISSN 1422-0067 (https://doi.org/10.3390/ijms25115783)

[thumbnail of Doveiko-etal-IJMS-2024-Estimating-binding-energies-of-pi-stacked-aromatic-dimers]
Preview
Text. Filename: Doveiko-etal-IJMS-2024-Estimating-binding-energies-of-pi-stacked-aromatic-dimers.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB)| Preview

Abstract

π–π stacking are omnipresent interactions, crucial in many areas of chemistry, and often studied using quantum chemical methods. Here, we report a simple and computationally efficient method of estimating the binding energies of stacked polycyclic aromatic hydrocarbons based on steered molecular dynamics. This method leverages the force field parameters for accurate calculation. The presented results show good agreement with those obtained through DFT at the ωB97X-D3/cc-pVQZ level of theory. It is demonstrated that this force field-driven SMD method can be applied to other aromatic molecules, allowing insight into the complexity of the stacking interactions and, more importantly, reporting π–π stacking energy values with reasonable precision.