A critical review of challenges and opportunities for the design and operation of offshore structures supporting renewable hydrogen production, storage, and transport

Rodríguez Castillo, Claudio Alexis and Yeter, Baran and Li, Shen and Brennan, Feargal and Collu, Maurizio (2024) A critical review of challenges and opportunities for the design and operation of offshore structures supporting renewable hydrogen production, storage, and transport. Wind Energy Science, 9 (3). 533–554. ISSN 2366-7451 (https://doi.org/10.5194/wes-9-533-2024)

[thumbnail of Rodriguez-Castillo-etal-WES-2023-A-critical-review-of-challenges-and-opportunities-for-the-design-and-operation-of-offshore-structures]
Preview
Text. Filename: Rodriguez-Castillo-etal-WES-2023-A-critical-review-of-challenges-and-opportunities-for-the-design-and-operation-of-offshore-structures.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB)| Preview

Abstract

The climate emergency has prompted rapid and intensive research into sustainable, reliable, and affordable energy alternatives. Offshore wind has developed and exceeded all expectations over the last 2 decades and is now a central pillar of the UK and other international strategies to decarbonise energy systems. As the dependence on variable renewable energy resources increases, so does the importance of the necessity to develop energy storage and nonelectric energy vectors to ensure a resilient whole-energy system, also enabling difficult-to-decarbonise applications, e.g. heavy industry, heat, and certain areas of transport. Offshore wind and marine renewables have enormous potential that can never be completely utilised by the electricity system, and so green hydrogen has become a topic of increasing interest. Although numerous offshore and marine technologies are possible, the most appropriate combinations of power generation, materials and supporting structures, electrolysers, and support infrastructure and equipment depend on a wide range of factors, including the potential to maximise the use of local resources. This paper presents a critical review of contemporary offshore engineering tools and methodologies developed over many years for upstream oil and gas (O&G), maritime, and more recently offshore wind and renewable energy applications and examines how these along with recent developments in modelling and digitalisation might provide a platform to optimise green hydrogen offshore infrastructure. The key drivers and characteristics of future offshore green hydrogen systems are considered, and a SWOT (strength, weakness, opportunity, and threat) analysis is provided to aid the discussion of the challenges and opportunities for the offshore green hydrogen production sector.