Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Supramolecular polymers of 4,5-bis(bromomethyl)-1,3-dithiole-2-thione-dihalogen adducts

Lee, Louise and Crouch, David J. and Wright, Shaun P. and Berridge, Rory and Skabara, Peter J. and Bricklebank, Neil and Coles, Simon J. and Light, Mark E. and Hursthouse, Michael B. (2004) Supramolecular polymers of 4,5-bis(bromomethyl)-1,3-dithiole-2-thione-dihalogen adducts. CrystEngComm, 6. pp. 612-617. ISSN 1466-8033

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The title compound has been reacted with I-2, IBr and ICl to afford the charge-transfer adducts 4.2I(2), 4.IBr and 4.ICl.I-2, respectively. The products have been characterised by Raman and IR spectroscopy and X-ray crystallography. The adducts contain linear S...I-X (X=I, Br or Cl) units (174-178degrees) in which the S...I contacts range from 2.534-2.597 AAngstrom. In 4.2I(2) and 4.ICl.I-2, the materials contain additional 'free' diiodine units which are held within a matrix of intermolecular contacts, predominantly through non-covalent halogen halogen and sulfur-halogen interactions. Although the functional groups in the parent molecule (4) are inert at the supramolecular level, the bromomethyl groups in the adducts contribute strong interactions through Br...Br, Br...I, Br...S and Br...H close contacts. The structures of the complexes are polymeric in nature, providing interactions in two and three dimensions.