Martinoid : the peptoid martini force field
Swanson, Hamish W. A. and van Teijlingen, Alexander and Lau, King Hang Aaron and Tuttle, Tell (2024) Martinoid : the peptoid martini force field. Physical Chemistry Chemical Physics, 26 (6). pp. 4939-4953. ISSN 1463-9084 (https://doi.org/10.1039/D3CP05907C)
Preview |
Text.
Filename: Swanson-etal-PCCP-2024-Martinoid-the-peptoid-martini-force-field.pdf
Final Published Version License: Download (2MB)| Preview |
Abstract
Many exciting innovations have been made in the development of assembling peptoid materials. Typically, these have utilised large oligomeric sequences, though elsewhere the study of peptide self-assembly has yielded numerous examples of assemblers below 6–8 residues in length, evidencing that minimal peptoid assemblers are not only feasible but expected. A productive means of discovering such materials is through the application of in silico screening methods, which often benefit from the use of coarse-grained molecular dynamics (CG-MD) simulations. At the current level of development, CG models for peptoids are insufficient and we have been motivated to develop a Martini forcefield compatible peptoid model. A dual bottom-up and top-down parameterisation approach has been adopted, in keeping with the Martini parameterisation methodology, targeting the reproduction of atomistic MD dynamics and trends in experimentally obtained log D7.4 partition coefficients, respectively. This work has yielded valuable insights into the practicalities of parameterising peptoid monomers. Additionally, we demonstrate that our model can reproduce the experimental observations of two very different peptoid assembly systems, namely peptoid nanosheets and minimal tripeptoid assembly. Further we can simulate the peptoid helix secondary structure relevant for antimicrobial sequences. To be of maximum usefulness to the peptoid research community, we have developed freely available code to generate all requisite simulation files for the application of this model with Gromacs MD software.
ORCID iDs
Swanson, Hamish W. A., van Teijlingen, Alexander ORCID: https://orcid.org/0000-0002-3739-8943, Lau, King Hang Aaron ORCID: https://orcid.org/0000-0003-3676-9228 and Tuttle, Tell;-
-
Item type: Article ID code: 87976 Dates: DateEvent22 January 2024Published22 January 2024Published Online19 January 2024AcceptedSubjects: Science > Chemistry Department: Faculty of Science > Pure and Applied Chemistry
Technology and Innovation Centre > BionanotechnologyDepositing user: Pure Administrator Date deposited: 30 Jan 2024 10:57 Last modified: 16 Nov 2024 01:26 URI: https://strathprints.strath.ac.uk/id/eprint/87976