A convex and selective variational model for image segmentation

Spencer, Jack and Chen, Ke (2015) A convex and selective variational model for image segmentation. Communications in Mathematical Sciences, 13 (6). pp. 1453-1472. ISSN 1539-6746 (https://doi.org/10.4310/CMS.2015.v13.n6.a5)

[thumbnail of Spencer-Chen-CMS2015-A-convex-selective-variational-model-image-segmentation]
Preview
Text. Filename: Spencer-Chen-CMS2015-A-convex-selective-variational-model-image-segmentation.pdf
Accepted Author Manuscript

Download (13MB)| Preview

Abstract

Selective image segmentation is the task of extracting one object of interest from an image, based on minimal user input. Recent level set based variational models have shown to be effective and reliable, although they can be sensitive to initialization due to the minimization problems being nonconvex. This sometimes means that successful segmentation relies too heavily on user input or a solution found is only a local minimizer, i.e. not the correct solution. The same principle applies to variational models that extract all objects in an image (global segmentation); however, in recent years, some have been successfully reformulated as convex optimization problems, allowing global minimizers to be found. There are, however, problems associated with extending the convex formulation to the current selective models, which provides the motivation for the proposal of a new selective model. In this paper we propose a new selective segmentation model, combining ideas from global segmentation, that can be reformulated in a convex way such that a global minimizer can be found independently of initialization. Numerical results are given that demonstrate its reliability in terms of removing the sensitivity to initialization present in previous models, and its robustness to user input.

ORCID iDs

Spencer, Jack and Chen, Ke ORCID logoORCID: https://orcid.org/0000-0002-6093-6623;