An efficient computational analysis and modelling of transferred aerodynamic loading on direct-drive system of 5MW wind turbine and results driven optimisation for a sustainable generator structure

Szatkowski, Szymon and Jaen-Sola, Pablo and Oterkus, Erkan (2024) An efficient computational analysis and modelling of transferred aerodynamic loading on direct-drive system of 5MW wind turbine and results driven optimisation for a sustainable generator structure. Sustainability, 16 (2). 545. ISSN 2071-1050 (https://doi.org/10.3390/su16020545)

[thumbnail of Szatkowski-etal-Susutainability-2024-An-efficient-computational-analysis-and-modelling-of-transferred-aerodynamic-loading]
Preview
Text. Filename: Szatkowski-etal-Susutainability-2024-An-efficient-computational-analysis-and-modelling-of-transferred-aerodynamic-loading.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (10MB)| Preview

Abstract

The study presents an efficient computational investigation on the behaviour of the direct-drive system integrated into the offshore 5 MW NREL wind turbine model under demanding aerodynamic loading conditions with the aim of optimising and developing more sustainable key structural components. The research was based on computational simulation packages in order to verify the use of real-world wind data and the loading conditions on the blade structures through aero-elastic simulation studies as well as analyse the behaviour of the drive system. Through the application of validated aerodynamic loading conditions, resulting normal forces on the blades structure were obtained and applied to a dedicated simplified model that was also previously validated to estimate the transferred loads into the powertrain. The adopted methodology allowed for the identification of shaft misalignment induced air gap eccentricity. The impact of shaft deflections on resulting magnetomotive force was considered by making use of the Maxwell stress distribution expression. By taking into account the resulting loading cases on the generator structure, as well as the inherent typical loads generated by the electrical machine, a procedure including structural parametric and topology optimisation was developed and performed, achieving a rotor mass reduction between 8.5 and 9.6% compared to the original model.