An efficient computational analysis and modelling of transferred aerodynamic loading on direct-drive system of 5MW wind turbine and results driven optimisation for a sustainable generator structure
Szatkowski, Szymon and Jaen-Sola, Pablo and Oterkus, Erkan (2024) An efficient computational analysis and modelling of transferred aerodynamic loading on direct-drive system of 5MW wind turbine and results driven optimisation for a sustainable generator structure. Sustainability, 16 (2). 545. ISSN 2071-1050 (https://doi.org/10.3390/su16020545)
Preview |
Text.
Filename: Szatkowski-etal-Susutainability-2024-An-efficient-computational-analysis-and-modelling-of-transferred-aerodynamic-loading.pdf
Final Published Version License: Download (10MB)| Preview |
Abstract
The study presents an efficient computational investigation on the behaviour of the direct-drive system integrated into the offshore 5 MW NREL wind turbine model under demanding aerodynamic loading conditions with the aim of optimising and developing more sustainable key structural components. The research was based on computational simulation packages in order to verify the use of real-world wind data and the loading conditions on the blade structures through aero-elastic simulation studies as well as analyse the behaviour of the drive system. Through the application of validated aerodynamic loading conditions, resulting normal forces on the blades structure were obtained and applied to a dedicated simplified model that was also previously validated to estimate the transferred loads into the powertrain. The adopted methodology allowed for the identification of shaft misalignment induced air gap eccentricity. The impact of shaft deflections on resulting magnetomotive force was considered by making use of the Maxwell stress distribution expression. By taking into account the resulting loading cases on the generator structure, as well as the inherent typical loads generated by the electrical machine, a procedure including structural parametric and topology optimisation was developed and performed, achieving a rotor mass reduction between 8.5 and 9.6% compared to the original model.
ORCID iDs
Szatkowski, Szymon, Jaen-Sola, Pablo and Oterkus, Erkan ORCID: https://orcid.org/0000-0002-4614-7214;-
-
Item type: Article ID code: 87782 Dates: DateEvent8 January 2024Published29 December 2023Accepted2 November 2023SubmittedSubjects: Technology > Hydraulic engineering. Ocean engineering
Technology > Electrical engineering. Electronics Nuclear engineering > Production of electric energy or powerDepartment: Faculty of Engineering > Naval Architecture, Ocean & Marine Engineering Depositing user: Pure Administrator Date deposited: 11 Jan 2024 11:26 Last modified: 05 Jan 2025 08:17 URI: https://strathprints.strath.ac.uk/id/eprint/87782