Activated carbon utilization from corn derivatives for high energy density flexible supercapacitors
Reddygunta, Kiran Kumar Reddy and Beresford, Rachael and Šiller, Lidija and Berlouis, Leonard and Ivaturi, Aruna (2023) Activated carbon utilization from corn derivatives for high energy density flexible supercapacitors. Energy and Fuels, 37 (23). pp. 19248-19265. ISSN 0887-0624 (https://doi.org/10.1021/acs.energyfuels.3c01925)
Preview |
Text.
Filename: Reddygunta-etal-EF-2023-Activated-carbon-utilization-from-corn-derivatives-for-high-energy-density-flexible-supercapacitors.pdf
Final Published Version License: Download (12MB)| Preview |
Abstract
Porous activated carbons from four types of corn derivatives (husk, fiber, grain, and cob) are compared for the first time regarding their structural, morphological, and electrochemical characteristics for application as electrode materials in flexible supercapacitors. Benefiting from its hierarchical porous structure, appropriate amount of N and O functional groups, large specific surface area (1804 m2 g–1), and high degree of graphitization, the activated carbon from corn grains displayed the best electrochemical performance as an electrode material for supercapacitor applications; when tested in a three-electrode configuration, it had a high specific capacitance (411 F g–1 at 1.0 A g–1) and an excellent rate capacity (85.7% capacitance retention at 30 A g–1) in an aqueous 6 M KOH electrolyte. The high specific surface area and high degree of graphitization of the activated carbon from corn grains (AC grain) played crucial roles in its excellent energy storage performance. Most importantly, the flexible supercapacitor that was assembled with slot-die coated AC grain electrodes and a hydroxyethyl cellulose (HEC)/KOH biopolymer electrolyte delivered an outstanding electrochemical performance with an energy density of 31.1 Wh kg–1 at 215 W kg–1 and ultrahigh cyclic stability (91.3% capacitance retention after 10 000 cycles at a current density of 5 A g–1). Also, the assembled flexible supercapacitor maintained an energy density of 20.03 Wh kg–1 even under a high power density of 28.01 kW kg–1. These findings conclude that the porous carbon material obtained from corn grains has enormous potential as a high-performance electrode material for supercapacitors.
ORCID iDs
Reddygunta, Kiran Kumar Reddy, Beresford, Rachael, Šiller, Lidija, Berlouis, Leonard ORCID: https://orcid.org/0000-0002-7217-1680 and Ivaturi, Aruna;-
-
Item type: Article ID code: 87315 Dates: DateEvent7 December 2023Published22 November 2023Published Online1 November 2023AcceptedSubjects: Technology > Electrical engineering. Electronics Nuclear engineering > Production of electric energy or power
Technology > Chemical engineering
Science > ChemistryDepartment: Strategic Research Themes > Measurement Science and Enabling Technologies
Strategic Research Themes > Innovation Entrepreneurship
Strategic Research Themes > Health and Wellbeing
Strategic Research Themes > Advanced Manufacturing and Materials
Strategic Research Themes > Energy
Faculty of Science > Pure and Applied ChemistryDepositing user: Pure Administrator Date deposited: 14 Nov 2023 12:51 Last modified: 16 Jan 2025 15:45 URI: https://strathprints.strath.ac.uk/id/eprint/87315