SOFC anodes impregnated with noble metal catalyst nanoparticles for high fuel utilization

Futamura, Shotaro and Muramoto, Aki and Tachikawa, Yuya and Matsuda, Junko and Lyth, Stephen M. and Shiratori, Yusuke and Taniguchi, Shunsuke and Sasaki, Kazunari (2019) SOFC anodes impregnated with noble metal catalyst nanoparticles for high fuel utilization. International Journal of Hydrogen Energy, 44 (16). pp. 8502-8518. ISSN 0360-3199 (https://doi.org/10.1016/j.ijhydene.2019.01.223)

[thumbnail of Futamura-etal-IJHE-2019-SOFC-anodes-impregnated-with-noble-metal-catalyst-nanoparticles]
Preview
Text. Filename: Futamura-etal-IJHE-2019-SOFC-anodes-impregnated-with-noble-metal-catalyst-nanoparticles.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (6MB)| Preview

Abstract

Redox-stable solid oxide fuel cell (SOFC) anodes are developed in order to improve durability at higher fuel utilization, as a possible alternative to conventional Ni-zirconia cermet anodes. Ce0.9Gd0.1O2 (GDC) is utilized as a mixed ionic and electronic conductor (MIEC), in combination with Sr0.9La0.1TiO3 (LST) as an electronic conductor. The stability of noble metals (Rh, Pt, and Pd) is analyzed via thermochemical calculation of stable phases. Noble metal catalyst nanoparticles are incorporated via co-impregnation with GDC. The electrochemical characteristics of SOFC single cells using these anode materials are investigated in highly-humidified H2 at 800 °C. Their stability at high fuel utilization is analyzed. These co-impregnated anodes with highly dispersed noble metal catalysts on the LST-GDC conducting backbones, achieve high I[sbnd]V performance comparable to conventional Ni-cermet anodes. The co-impregnated anodes also achieve considerably high catalytic mass activity. At higher oxygen partial pressure, where the Ni catalyst can be deactivated by oxidation, these noble catalysts are thermochemically stable in the metallic state, and tolerant against oxidation. This class of alternative catalyst, impregnated with low-loading of noble metals could contribute to stable operation in the downstream region of SOFC systems. A simple cost analysis indicates a tolerance of using noble metals, provided their loading is sufficiently low.